LA IV^ DIMENSIONE

LA IV^ DIMENSIONE

 Lo spazio sotterraneo di Romaa cura di
Giuseppe Gisotti
Giulio Pazzagli
Fabio Garbin

Francesco Alberti, Roberto Brancaleoni, Giuseppe Capelli, Giuseppe Cavarretta, Gian Paolo Cavinato, Andrea Cinuzzi, Angelo Corazza, Alessandro Focaracci, Daiane Folle, Fabio Garbin, Calvino Gasparini, Giuseppe Gisotti, Maurizio Lanzini, Francesco Leone, Italo Insolera, Marco Mancini, Daniela Marzano, Roberto Mazza, Antonio Maria Michetti, Salvatore Milli, Massimiliano Moscatelli, Antonio Patera, Giulio Pazzagli, Giuseppe Raspa, Sergio Storoni Ridolfi, Andrea Sciotti, Francesco Pio Stigliano, Roberto Vallone

Il Convegno è Stato Organizzato Grazie
al Contributo di

MAIRE ENGINEERING

testing srl
variscowellpoint

SEGRETERIA
Organizzativa
La Sintesi

Supplemento al numero 4/2005 di Geologia dell'Ambiente periodico della SIGEA - Società Italiana di Geologia Ambientale Iscritto al Registro Nazionale della Stampa n. 06352
Autorizzazione del Tribunale di Roma n. 229 del 31 maggio 1994
Direttore responsabile: Giuseppe Gisotti
© 2005 SIGEA
Interventi al Convegno
Geologia Urbana nella capitale, viaggio nella IV^ dimensione Roma, 28 novembre 2005

Comitato scientifico

Giuseppe Calcerano
Fabio Garbin
Giuseppe Gisotti
Giancarlo Guado
Giulio Pazzagli
Bernardo Rossi Doria

Segreteria organizzativa

La Sintesi Srl
P.le R. Ardigò 31-00142 Roma
tel. 065406964 - fax 06233239783
http://www.la-sintesi.it
Progetto grafico, redazione e impaginazione
La Sintesi, Roma

Stampa

Rotostampa group
Finito di stampare nel mese di Novembre 2005

In copertina

Sezione del sottosuolo di Parigi
Il logo del convegno, originato nel magma creativo dei primi incontri organizzativi, è stato realizzato da Ferruccio di Paolo

Geologia Urbana nella capitale

 viaggio nella IV^dimensione Roma, 28 novembre 2005-Sala Convegni CNR promosso da
 in collaborazione con

Con il Patrocinio di

Ministero delle Infrastrutture e dei Trasporti Ministero per i Beni e le Attività Culturali

Consiglio
Nazionale delle Ricerche

Istituto Nazionale di Geofisica e Vulcanologia

Università degli Studi di Roma "La Sapienza"

Università degli Studi di Roma "Tor Vergata"

Ordine degli Architetti, Pianificatori, Paesaggisti e Consematori di Roma e Provincia

AGI

Associazione Geotecnica Italiana

Associazione Italiana di Architettura del Paesaggio

AIAT
Associazione Ingegneri Ambiente e Territorio

鼠FiDAF

Federazione Italiana
Dottori in Agraria e Forestali

INU
Istituto Nazionale di Urbanistica

610
Societa Italiana Gallerie
tulian Tumnelling Societn

9 Introduzione

Prima Parte
 Risorse e rischi geologici a Roma

13 Geologia e Urbanistica
di Giuseppe Gisotti
23 La conoscenza geologica e la IV^ dimensione
di Giulio Pazzagli, Fabio Garbin
33 I terreni di Roma sotto l'aspetto della Geologia tecnica
di Giuseppe Cavarretta, Gian Paolo Cavinato, Marco Mancini, Massimiliano Moscatelli, Antonio Patera, Giuseppe Raspa, Francesco Pio Stigliano, Roberto Vallone, Daiane Folle, Fabio Garbin, Salvatore Milli, Sergio Storoni Ridolfi

47 Schema idrogeologico della città di Roma. Gestione della risorsa idrica e del rischio geologico
di Giuseppe Capelli, Roberto Mazza
59 Le cavità sotterranee: dissesti, censimenti e metodologie d'analisi
di Angelo Corazza, Maurizio Lanzini, Francesco Leone
77 I rischi geologici nell'area urbana di Roma
di Calvino Gasparini, Francesco Leone, Roberto Brancaleoni, Fabio Garbin

Seconda Parte

Le opere e le loro interferenze con l'ambiente geologico

93 Innovazione tecnologica della Soles - Forli nelle opere di fondazione in ambiente urbano
di Francesco Alberti
103 IV^ dimensione: possibilità nella Capitale
di Alessandro Focaracci
115 La nuova linea della Metropolitana di Roma: Ia Linea B1
di Andrea Sciotti
131 Breve nota sui problemi relativi alla progettazione delle strutture dei parcheggi
di Antonio Maria Michetti Andrea Cinuzzi
135 Il Fascicolo del Fabbricato
di Daniela Marzano

Appendice

141 Alle origini della geologia moderna. Alcune considerazioni di Horace-Benedict de Saussure e di di Johann Wolfgang Goethe

a cura di Italo Insolera

153 Bibliografia

Introduzione

In un contesto tanto antropizzato qual'è quello del territorio europeo ed in particolare italiano, avviene sempre più spesso che l'area in cui sorgono le città "storiche" sia satura. Ovvero non è più possibile, o almeno risulta notevolmente complesso, potervi realizzare quei servizi e quelle infrastrutture che, in quanto concepite per migliorare la qualità di vita, facilitino un progressivo ritorno della popolazione verso l'antico centro cittadino. D'altra parte molti dei servizi necessari per questo scopo, oltre naturalmente alle nuove infrastrutture legate ai trasporti ed alle comunicazioni, potrebbero oggi essere ubicate nel sottosuolo cittadino senza alcun problema tecnico insormontabile.

Roma costituisce, tra le metropoli, un vero e proprio "accidente geologico": tufi vulcanici e lave, provenienti sia dai Colli Albani che dai Monti Sabatini, vi convivono infatti con le diverse fasi alluvionali del Tevere, dell'Aniene e di numerosi affluenti minori.

Ad essi si sono poi sovrimposti riporti in una quantità tipica di un'area antropizzata da poco meno di 3000 anni e quindi caratterizzati da spessori ed età di messa in posto le più disparate... e ciò senza contare i numerosi episodi di tipo palustre e lacustre che complicano ulteriormente la "situazione" di questo sottosuolo urbano.

Ed è in questo scenario complesso che tutti debbono operare: dai politici, agli imprenditori, ai tecnici....

Finora Roma ha limitato il suo sviluppo urbanistico alla superficie quasi escludendo
l'espandersi dei servizi in sottosuolo, ed è appunto per tal motivo che in questa sede si intende prospettare lo sviluppo della cosiddetta "IV dimensione", ovvero di una nuova concezione nella progettazione di servizi ed infrastrutture che tenga presente la possibile realizzazione dei servizi e delle infrastrutture nel sottosuolo.

La tecnica costruttiva delle opere in sotterraneo ha raggiunto, soprattutto in un contesto caratterizzato da profondità limitate, quali appunto possono essere previste quelle in cui siano ubicati i servizi di una città, un livello di affidabilità tale da permettere di superare ogni pregiudizio che, fino a ieri poteva ostacolare il ricorso ad Opere in Sotterraneo.

L'adozione delle piü moderne ipotesi progettuali unite all'utilizzo di nuove tecnologie realizzative permette oggi un facile superamento delle passate, oggettive, difficoltà nella realizzazione delle Opere in sotterraneo e quindi anche di quel "naturale sospetto" che esse hanno finora istintivamente indotto nei non addetti a tali lavori.

Architettura, Geologia ed Ingegneria sono i temi che si mescolano, e non a caso, negli articoli che vengono presentati; ed è logico ove si pensi che l'obbiettivo del Convegno "Geologia Urbana nella capitale, viaggio nella IV ${ }^{\circ}$ dimensione" è stato, sin dalla sua ideazione, quello di ottimizzare l'utilizzo delle tre materie nello sfruttamento del sottosuolo a favore dello sviluppo urbanistico.

Al di là quindi del caso specifico della Capitale, che viene qui trattato, molte altre città del territorio nazionale trarrebbero grandi vantaggi dallo sfruttamento del loro sottosuolo.

Molte di esse infatti risultano spesso "costrette" in spazi limitati anche a cau-
sa di peculiari caratteristiche geomorfologiche del loro territorio.

Cosi mentre per Roma, ed in parte per Milano, la necessità di ricorrere alla $I V^{\circ}$ dimensione scaturisce essenzialmente dall' estensione della città, in molti altri casil'opportunità nasce da esigenze collegate alle caratteristiche "fisiche" del loro territorio.

Si pensi ad esempio a Genova, costretta tra mare e colline, a Catania, circondata da colate laviche, ad Ancona, Iimitata anch'essa dal mare e dalle frane , ma anche a Firenze confinata in una valle stupenda, ma ormai satura, per non dire di Napoli città veramente "compressa" tra il mare ed il Vesuvio e cosi via, caso per caso.

Paesaggio ed Urbanistica, Geologia e Litologia, Strutture e Geotecnica, si intrecciano quindi tra di loro in una stretta "matassa" che proprio gli interventi riportati in questo testo si sforzano di dipanare!

Giuseppe Gisotti
Giulio Pazzagli
Fabio Garbin
Roma, Novembre 2005

PRIMA PARTE

Risorse e rischi geologici a Roma

二丁斤

Geologia e Urbanistica

Il contributo delle Scienze della Terra

Le Scienze della Terra, essendo dotate di una visione sistemica-evoluzionistica dei processi naturali che interessano e che hanno interessato la biosfera fino dalla sua formazione, possono fornire l'indispensabile contributo alla conoscenza ed alla risoluzione dei numerosi problemi che travagliano le nostre città (Gisotti, Zarlenga, 1998).

Tali problemi possono essere ricondotti a tre categorie :
a - inquinamento dell'aria, dell'acqua, del suolo e del sottosuolo;
b-modificazioni fisiche del territorio urbano con conseguente riduzione di spazi naturali e aree verdi che si riflettono sulla qualità della vita;
c-rischi tecnologicie naturali.
Il tema centrale delle ricerche é quindi l'ambiente urbano, indagato secondo una duplice prospettiva: la prima è quella degli effetti derivanti dalla trasformazione indotta dall'uomo sull'ecosfera e la seconda mira ad una valutazione degli effetti dei fenomeni naturali sulla salute e la sicurezza dell'uomo urbanizzato.

Tale affermazione comporta un approccio culturale diverso alle tematiche e al

[^0]modo di fare pianificazione.
La zonizzazione attualmente in uso nella strumentazione urbanistica e le relative norme di attuazione fondano le proprie scelte principalmente su criteri di soddisfacimento di fabbisogni mutuati da obiettivi di sviluppo socioeconomico. Viceversa la lettura di un territorio in un'ottica di gestione ecosistemica sostenible, sposta l'elemento principale su cui basare le scelte sul concetto di stato-pressioni-risposte dei diversi fattori ambientali, secondo il modello DPSIR (Driving Forces-Pressures-States-ImpactsResponses) (Gisotti, Zarlenga, 2004). Lo strumento operativo di quanto enunciato è la relazione geologica per i P.R.G. (Piani Regolatori Generali), richiesta da varie leggi regionali, che deve essere realizzata preventivamente o contemporaneamente agli studi degli urbanisti chiamati a redigere il P.R.G., in modo da potere severamente incidere, a seconda delle risorse (potenzialità) e dei rischi geologici (limitazioni di uso) riscontrati sul territorio comunale, sulle scelte urbanistiche. Va da sé che lo stesso discorso vale per la progettazione delle singole opere nel contesto urbano, ad esempio in merito alle interferenze tra costruzioni e falda acquifera, alla realizzazione di parcheggi sotterranei.

Si tratta quindi di passare da una geologia pensata e realizzata come un supporto rivolto a fornire le basi conoscitive essenziali del sistema fisico al pianificatore/progettista, ad una geologia urbana finalizzata all'interpretazione interattiva dell'ecosistema urbano, dei suoi reali confini territoriali, del suo funzionamento e della sua struttura, dei suoi stati di tensione e delle sue dinamiche. In altre parole le azioni (o il progetto che
dir si voglia) non si confrontano più con analisi tematiche (geologiche o di altra natura) tutte interne al piano, bensì con i caratteri del sistema ambientale di riferimento nello stato di modificazione in cui si trova.

In questo senso possiamo definire la Geologia Urbana come il campo delle Scienze della Terra applicato alla soluzione dei problemi connessi all'urbanizzazione nei suoi molteplici aspetti. Ad essa compete lo studio degli equilibri delI'ambiente fisico, dei limiti e delle potenzialità che questi equilibri presentano per I'organizzazione dello spazio e l'analisi o la previsione degli impatti delle attività umane sull'ambiente urbano.

Alcuni dei suoi connotati qualificanti sono: l'integrazione di discipline diverse (geologia, ingegneria, geochimica, architettura, urbanistica, medicina sanitaria, agronomia, ecc.); l'impulso conferibile alla ricerca nei settori sopracitati, compreso quello relativo alle nuove tecnologie per la realizzazione, l'impianto e la gestione dei sistemi a rete; la riduzione degli impatti e viceversa la creazione di nuove opportunità per una migliore qualità della vita urbana.

Il contributo che la geologia urbana può dare alla riduzione e alla razionalizzazione delle questioni insite o determinate dall'insediamento umano è di grande importanza, basti pensare ad esempio alle seguenti aree problematiche:

- rischi geologici: fenomeni di subsidenza indotta (es. Venezia, Ravenna, Bologna); frane ad Ancona; colate di fango a Sarno e paesi vicini; cedimenti dei terreni di fondazione e sprofondamenti del terreno, in conseguenza della presenza di estese cavità sotterranee, in aree urbane (es. Roma e Napoli); esondazioni
(Firenze); rischio sismico (es. Messina, Catania, Reggio Calabria, Udine, Assisi); rischio vulcanico nei centri urbani alle falde del Vesuvio e dell'Etna;
- reperimento di notevoli volumi di materiali litoidi ed inerti per la costruzione e manutenzione di edifici, manufatti e opere infrastrutturali;
- crescente domanda di acque sotterranee per usi idropotabili ed industriali che devono essere ricercate a sempre maggiori profondità, a causa del declino del livello piezometrico delle falde o dello stato di inquinamento diffuso degli acquiferi più superficiali;
- bonifica/recupero delle aree produttive dismesse, alcune situate nel centro della città, come l'ex stabilimento della Fibronit a Bari, con necessità di disinquinamento del suolo e delle acque sotterranee;
- compattazione e impermeabilizzazione del suolo/sottosuolo, con problemi circa la generazione di alluvioni;
- intenso consumo di suolo dovuto ad una espansione diffusa delle periferie urbane e delle aree di cintura delle maggiori conurbazioni ;
- smaltimento di notevoli quantità di rifiuti solidi urbani e di liquami civili, che si trasmettono intorno alla città, con relativi problemi di inquinamento ambientale, come è il caso della discarica di Malagrotta alla periferia di Roma .

La componente suolo/sottosuolo contribuisce alla circolazione della materia poiché da una parte le risorse geologiche entrano a far parte del sistema urbano e dall'altra risorse geologiche di scarto, in quanto metabolizzate (acque usate, macerie, ecc.) ed altri materiali (rifiuti solidi urbani) escono dal sistema
per andare ad interessare porzioni più o meno ampie del territorio esterno alla città, dove spesso creano notevoli impatti ambientali e tensioni con le popolazioni locali (ad es. problema dei rifiuti in Campania). Tale movimentazione di risorse coinvolge più o meno pesantemente I'ambiente extraurbano con la realizzazione di cave, pozzi, strade, ferrovie, acquedotti, ecc., opere che generano impatti ambientali secondari. Nelle aree urbane possono essere presenti altre risorse geologiche utilizzate localmente, come i materiali da costruzione, le acque sotterranee, gli spazi sotterranei da destinare a servizi, suoli idonei per l'incremento del verde urbano e per la ricarica delle falde acquifere, geositi.

Adottando l'approccio della pericolosità, ossia l'evento catastrofico che influisce negativamente sul funzionamento dell'ecosistema urbano, si può notare come i rischi geologici (terremoti, eruzioni vulcaniche, dissesti idrogeologici, radioattività naturale) possano colpire il sito dove si progetta l'insediamento o l'insediamento stesso. Nel primo caso esiste il problema dell'adeguata scelta geologica del sito o delle idonee contromisure tecnologiche per mitigare il rischio geologico, nel secondo caso si tratta di adeguare il sito o lo stesso insediamento a sopportare l'evento catastrofico.

Viceversa può essere la stessa attività edilizia, urbanistica o industriale a modificare l'ambiente geologico urbano innescando dissesti idrogeologici, inquinando o depauperando le locali acque sotterranee, inquinando il suolo, alterando la dinamica fluviale, realizzando processi geomorfici antropici (scavi, riporti, ecc.).

Nel primo caso (rischi per l'insediamento) le caratteristiche geologiche si
pongono in una prospettiva "attiva" rispetto all'insediamento urbano, in quanto possono costituire limitazioni più o meno gravi per la realizzazione o lo sviluppo dell'insediamento stesso; nel secondo caso (modificazioni indotte dall'insediamento) le risorse geologiche si pongono in prospettiva "passiva" rispetto all'insediamento stesso, in quanto quest'ultimo può alterarle o distruggerle.

Nell'uno e nell'altro caso i problemi si ripercuotono sull'uomo e sulla biosfera in generale.

Le particolari problematiche geologiche della citta'

Nell'ambiente urbano i lavori devono tener conto di fattori numerosi e la cui interazione complica considerevolmente i problemi che si pongono agli ingegneri, ai geologi, agli urbanisti. Esempi dei pro-

Figura 1 - Roma, cavità in tufo litoide.
blemi che si incontrano sono i seguenti: riporti e antiche fondazioni costituiscono un sottosuolo molto eterogeneo; per le rocce bisogna definire la litologia, la struttura geologica, le proprietà acquifere (per le rocce sciolte origine, mineralogia, granulometria e proprietà meccaniche giocano un ruolo importante, mentre per le rocce lapidee bisogna considerare inoltre le proprietà alla scala del campione e dell'ammasso roccioso); rocce solubili e plastiche meritano una attenzione particolare; presenza di cavità sotterranee naturali; degradazione da parte di agenti atmosferici, erosione fluviale, frane, subsidenza, paleoalvei; falde acquifere diverse, pressione dell'acqua interstiziale, ecc.

Ai fattori naturali bisogna aggiungere numerosi fattori antropici: vibrazioni; scavi; rottura di canalizzazioni; cavità sotterranee adibite nel corso dei secoli a vari usi, quali cave, acquedotti, templi, catacombe, ecc. (Fig. 1) ; drenaggi; captazioni di acqua; interferenze delle opere con i fenomeni naturali che esse modificano, riattivano o accelerano; depositi di materiali solidi instabili o che causano l'inquinamento delle acque sotterranee; effetto sbarramento in una falda acquifera alluvionale e conseguenti inondazioni; pompaggi che attivano le dissoluzioni sotterranee, le oscillazioni delle falde acquifere e provocano deformazioni alla superficie del suolo (subsidenza).

Pertanto il "Comité Belgique de Géologie de l'Ingénieur" ritiene che i seguenti sette temi di geologia urbana siano meritevoli di particolare attenzione:

1. geologia applicata e pianificazione del territorio;
2. gallerie e trincee (strade, ferrovie, linee metropolitane): studio del tracciato,
scelta dei sistemi costruttivi e dei mezzi di esecuzione;
3. fondazioni a grande profondità: possibilità e limitazioni delle diverse tecniche di scavo e di sostegno;
4. scavi profondi di grandi dimensioni;
5. localizzazione e trattamento delle cavità: caverne, cave sotterranee, ecc.;
6. perturbazione del regime idraulico a causa di un utilizzo intensivo o di un abbassamento delle falde acquifere o per la presenza di opere sotterranee: conseguenze dannose, misure di difesa;
7. influenza dei lavori sotterranei (lavori minerari o di costruzioni), delle captazioni, ecc. sulle caratteristiche geotecniche dei terreni e sulle costruzioni.

Sono indispensabili per la soluzione di problemi pratici nelle città, oltre alla tradizionali carte geologiche, anche documenti quali le carte geotecniche, le carte di attitudine, le carte previsionali. E' opportuno anche sviluppare la ricerca applicata ai metodi geofisici più consoni all'ambiente urbano, in particolare alla individuazione delle cavità sotterranee, naturali o artificiali: infatti mentre la microgravimetria sembra lo strumento per eccellenza per risolvere questo problema, nelle aree urbane la prospezione elettrica è generalmente disturbata dalle correnti parassite; il metodo di prospezione magneto-elettrico indotto, a causa delle numerose frequenze utilizzabili, sembra ridurre questo inconveniente.

Infine si accenna alla opportunità che il grande pubblico sia coinvolto nella conoscenza del proprio sottosuolo urbano; un esempio è quello che viene illu-
strato nella figura 2, dove nella Linea metropolitana di Atene fa bella mostra di sé una stratigrafia che mostra alcuni reperti archeologici rinvenuti durante i lavori di scavo, inglobati nel materiale geologico che li contiene.

L'utilizzo dello spazio sotterraneo urbano

Come è stato affermato in precedenza, tra le risorse geologiche urbane è da annoverare lo spazio sotterraneo. L'uso del sottosuolo urbano quale migliore soluzione socio-ambientale per la collocazione di servizi e infrastrutture è da sempre praticato, per una serie di opere molto varie, dagli acquedotti alle cisterne d'acqua per alimentare città o flotte, dalla viabilità sotterranea ad enormi ripostigli per vari materiali. Col tempo lo spazio sotterraneo urbano è stato sempre più̀ utilizzato in numerose città di tutto il mondo, per gallerie stradali e ferroviarie, parcheggi, magazzini, laboratori, depositi di materiali, biblioteche, stadi, ecc. In alcuni casi la presenza di cavità sotterra-

Figura 2 - Atene, Linea metropolitana. I reperti archeologici rinvenuti durante i lavori vengono mostrati insieme al loro contenitore geologico (Foto Lanzini M).
nee ricavate allo scopo di estrarre minerali o materiali di cava è stata sfruttata per allocarvi, una volta esaurita la coltivazione di materiali lapidei, altre tipologie di colture, ad esempio passando alla coltura di alimenti, come è il caso delle numerose "fungaie" situate nelle ex cave sotterranee di pozzolana di Roma (Fig. 3).

In altre situazioni la presenza di cavità ha complicato l'edificazione in superficie, poiché per i pali di fondazione si è dovuto fare ricorso a particolari tecnologie (Fig. 4).

Secondo una corrente di pensiero è opportuno trasferire nel sottosuolo tutti quei servizi e infrastrutture (a cominciare dal maggior numero possibile di mezzi motorizzati) che sono causa di inquinamento e deterioramento dell'ambiente e del patrimonio naturale ed artistico, migliorando in modo sostanziale la qualità della vita degli abitanti.

Peraltro non tutti sono d'accordo nell'utilizzo sistematico del sottosuolo concepito come "quarta dimensione" e riserva di spazio quasi illimitata, a causa dei numerosi problemi e rischi indotti dalla realizzazione di opere in sotterraneo.

Figura 3 - Roma, ex cava di pozzolana utilizzata a fungaia.

Lo sviluppo dei centri abitati italiani è avvenuto da sempre attraverso una serie di attività interdipendenti ma conflittuali, generatrici, a lungo termine, di squilibri ambientali, di pesanti vincoli per il successivo sviluppo della città, di rischio per le persone e le cose. Nel corso di un Convegno svoltosi a Roma nel 1999 sull'argomento "Le cavità sotterranee nell'area urbana di Roma. Problemi di pericolosità e gestione" (Provincia di Roma, SIGEA, 1999) si faceva notare che a fronte di questa situazione si pongono due interrogativi:

- è possibile eliminare le situazioni di rischio?
- quali sono gli interventi più opportuni?

La risposta al primo interrogativo è senz'altro affermativa, se si fa riferimento a situazioni circoscritte, per le quali sia verificata tutta una serie di favorevoli condizioni al contorno (tra cui, principalmente, l'estensione limitata e finita delle cavità) e siano noti o siano stati definiti: parametri geometrici delle cavità, parametri geologico-tecnici e geomeccanici dei terreni presenti nell'area interessata dalle cavità, condizioni di stabilità delle cavità stesse. La definizione di questi parametri è molto impegnativa sul piano tecnico ed economico, anche per l'intralcio causato dalle opere di urbanizzazione in superficie.

Per quanto riguarda la risposta al secondo interrogativo, è evidente che la scelta degli interventi più opportuni deve derivare necessariamente dalle caratteristiche specifiche del sito e da un accurato accertamento dei parametri sopra ricordati. E' da ricordare, tuttavia,
che fare riferimento solo ad aree circoscritte in una situazione nella quale il problema è diffuso su grandi aree appare troppo limitato e fonte di possibili errori: se, infatti, le cavità costituiscono reti complesse ed estese, nella verifica statica e nella progettazione dell'intervento in un'area circoscritta si deve tener conto delle interazioni con le cavità presenti nelle zone limitrofe e degli effetti degli interventi stessi, anche a lungo termine, sulla stabilità di aree più ampie. In questo caso gli interventi che vengono effettuati hanno il carattere specifico di emergenza e non eliminano (al contrario spesso aggravano) il problema del rischio preesistente sull'area più estesa.

Nel caso che il primo interrogativo (eliminare le situazioni di rischio) si riferisca ad una situazione di pericolo temuto, diffuso su ampia area, la risposta deve essere più articolata ma può ancora essere affermativa. In tali casi la complessità dei fenomeni di instabilità che possono verificarsi e quella delle varie interazioni con il tessuto urbano, nonché la diffusione del fenomeno in interi quartieri della città richiede studi, indagini, e interventi molto impegnativi ed onerosi sotto l'aspetto economico.

E' evidente che a questo livello, per l'importanza dell'impegno finanziario necessario, per le implicazioni di competenze tra i soggetti istituzionali che hanno titolo in materia, l'intero problema richiede il coordinamento dell'Autorità pubblica.

E' necessario, pertanto, che alla scala del centro abitato il problema sia affrontato preliminarmente in termini ampi, con un ap-
proccio di studio che consenta una valutazione quantitativa del rischio e permetta di graduare nel tempo l'impegno tecnico ed economico da dedicare ad accertamenti di dettaglio, a più precise vaIutazioni del rischio e della necessità di intervento, alla scelta degli interventi di consolidamento più idonei.

Tale approccio può essere efficacemente realizzato facendo riferimento alle metodologie di valutazione del rischio già sperimentate e collaudate negli studi sulla instabilità dei versanti, adottandone, con opportuni accorgimenti, i principi informatori ed i criteri che guidano nella scelta della strategia di intervento.

I vincoli imposti dal tessuto urbano certamente riducono la scelta tra le possibili strategie di intervento nei casi di instabilità del territorio, ma, in ogni caso, le analisi suggerite dalla metodologia consentono di verificare e confrontare in modo più organico ed oggettivo i vari fattori che concorrono a definire il livello di rischio.

Nel caso si utilizzino cavità presenti, ad esempio quelle derivate dalla coltivazioni di materiali lapidei di Palermo, Na-

Figura 4 - Roma, Un palo di grande diametro "incamiciato" per il superamento di una cavità.
poli, Roma, Trieste, ecc., si possono incontrare oggettive difficoltà nelle verifiche di stabilità sia per la irregolare geometria delle cavità, sia per la difficoltà di valutare il comportamento meccanico dei terreni interessati dalle coltivazioni. Ma certamente l'aspetto più critico nelle analisi è rappresentato dalla scelta del coefficiente di sicurezza da assumere nella verifica di stabilità delle cavità 0 , ancor più, il coefficiente di sicurezza minimo da conseguire con un intervento di stabilizzazione. Inoltre, la definizione del rischio implica necessariamente la definizione di un livello di rischio accettabile in una determinata area. La definizione di tale soglia ha implicazioni sociali, giuridiche, economiche e deve trovare in ogni caso consenso ed adesione da parte dell'opinione pubblica.

Nel caso di alcune città italiane, l'applicazione di tale metodologia è già possibile sulla base delle conoscenze attuali, a partire dai lavori di censimento e delimitazione delle aree con presenza di cavità fatti già in passato sulla base dell'analisi dei riscontri diretti, della successione stratigrafica delle varie aree, dello spessore e delle caratteristiche degli orizzonti che venivano coltivati e delle tecniche di coltivazione che venivano adottate.

L'applicazione di tale metodologia affidata ad una Authority che raccolga figure professionali diverse (geologi, ingegneri, architetti, urbanisti, archeologi) sarebbe una chiara risposta alla richiesta di maggior livello di protezione contro il "rischio cavità sotterranee".

In tal modo il sottosuolo potrebbe riacquistare il suo ruolo primitivo di "risorsa" ed essere considerato come una riserva di spazio.

I principi informatori che portano a
considerare vantaggiosa la scelta dell'opzione sotterranea sono, nei riguardi della costruzione, la mancanza di interferenze dovute alle condizioni climatiche, quindi la riduzione dei tempi di realizzazione e di conseguenza dei costi dovuti ad eventuali ritardi, risparmio sul costo dell'esproprio dei terreni e infine, risparmio sugli oneri dovuti alla temporanea interruzione della normale destinazione giuridica, economica e sociale dell'area interessata. Nei riguardi della gestione poi si consta una maggiore durabilità delle opere civili, una manutenzione non condizionata dalle condizioni climatiche, un risparmio energetico nel condizionamento termico grazie alle proprietà isolanti del sottosuolo.

L'aspetto più critico riguarda le interferenze tra l'opera, durante le sue fasi di costruzione ed esercizio, e l'ambiente che la circonda, ossia il pericolo idrogeologico, crollo della volta della cavità e/o pressioni enormi che tendono a restringere la luce della cavità (questo però solo in casi di alcune categorie di rocce particolarmente "spingenti", come le Argille Varicolori Scagliose), il pericolo sismico (nel caso di aree ad alta sismicità) e la intercettazione di falde acquifere.

Per fare un esempio, il progetto del parcheggio sotterraneo nel Lungotevere Marzio ha suscitato forti perplessità poiché lo Studio di Impatto Ambientale non ha previsto l'interferenza fra la profonda ed estesa struttura sotterranea e la falda acquifera che si scarica nel Tevere. Infatti si verificherebbe la modifica delle linee di deflusso sotterraneo, ossia un "rigonfiamento" della falda acquifera a monte dell'ostacolo rappresentato dal parcheggio. Per effetto del citato innalzamento della falda, le acque sotterranee andreb-
bero a saturare i terreni di fondazione dei palazzi situati ai bordi del Lungotevere. Di conseguenza i prevedibili effetti sarebbero: a) l'allagamento di scantinati e in genere di ambienti interrati e seminterrati dei fabbricati, progettati e costruiti senza prevedere di essere un giorno immersi nella falda acquifera; b) la variazione delle pressioni interstiziali in terreni altamente eterogenei e quindi anche dei relativi parametri geotecnici; è risaputo che la variazione di tali parametri, al variare del battente idraulico, può determinare cedimenti diversi delle pilastrature, con conseguenti fessurazioni negli elementi fragili delle strutture, in funzione dei valori di distorsione angolare impressi alle strutture stesse.

Per quanto si sa del progetto del parcheggio e del relativo Studio d'Impatto Ambientale, in tali documenti la problematica in esame non è stata presa in considerazione in modo esaustivo ed efficace, né sono stati proposti interventi di mitigazione, come opportuni by-pass drenanti.

In conclusione, di fronte a vantaggi nell'uso del sottosuolo vi possono essere anche degli svantaggi, che possono essere ridotti solo in base a severi studi e indagini atti a valutarne i pericoli e in base ad una analisi costi-benefici.

Riferimenti bibliografici

BRANCALEONI R., CORAZZA A., GARBIN F., LEONE F., MARASCHINI C., SCARAPAZZI M. (2003) Il rilievo di Monte Mario a Roma: sviluppo urbanistico e dissesti. Un caso di geologia urbana. "Geologia dell'Ambiente", n. 3, SIGEA, Roma.

GISOTTI G., ZARLENGA F. (1998) Geologia urbana: lo stato dell'arte in Italia. "Geologia dell'Ambiente", n. 4, SIGEA, Roma.
GISOTTI G., ZARLENGA F. (2004) Geologia Ambientale. Principi e metodi. Dario Flaccovio Editore, Palermo.
PAZZAGLI G., MAURI M. P. (2002) Urbanistica, piani regolatori e conoscenza del sottosuo10. "Geologia dell'Ambiente", n. 1, SIGEA, Roma.
PROVINCIA DI ROMA, SIGEA (1999) Le cavità sotterranee nell'area urbana di Roma e nella Provincia. Problemi di pericolosità e gestione. Atti del Convegno, Roma.

 $\|^{\prime \prime}$ 㫨

 (t)

 $H M-\|=1$ Than

La conoscenza geologica e la IV dimensione

Fabio Garbin, Giulio Pazzagli

La necessità di iniziare a pensare al sottosuolo delle città come possibile "serba toio di spazio libero", nasce dal constatare come in molti casi il territorio cittadino abbia saturato le aree libere e raggiunto dimensioni tali da imporre la ricerca di zone alternative di espansione.

Un classico esempio è quello di una città situata in una valle stretta, come ad esempio quelle che caratterizzano l'Appennino.

Progressivamente l'abitato tende ad estendersi in senso longitudinale occupando l'intero fondo valle o, comunque, allontanando sempre di più le periferie dal centro dove, tradizionalmente, sono ubicati i servizi più importanti per la comunità.

Andando però ad analizzare in profondità la situazione, appare evidente come in molti casi non vi sia un'effettiva necessità che i servizi stessi siano ubicati in superficie, almeno in alcune loro componenti.

Tipico l'esempio delle infrastrutture di trasporto, quali soprattutto le metropolitane ed in alcuni casi le ferrovie, che possono affacciarsi nel territorio cittadino solo nel caso delle stazioni di accesso mentre, ovunque sia possibile, le vie di grande comunicazione ne vengono allontanate.

[^1]

Figura 1 - Roma nel 1577 da S. Dupérac Pianta di Roma (da "Roma vista dal cielo" Ed. Romana Soc. Editrice - 1982.

Escludendo quindi i servizi sopra accennati esistono molti altri casi in cui essi potrebbero essere ubicati in profondità, mentre a tutt' oggi si trovano in superficie soprattutto in quanto legati alla tradizione. Basti pensare non solo ai magazzini, alle aree di stoccaggio, ai depositi di macchinari, ma anche ai supermercati, ai teatri e cinematografi, alle sale di riunione, tutti servizi cioè che normalmente occupano grandi spazi in superficie, ma a cui nulla si oppone affinché vengano previsti, o ricollocati, al di sotto di essa, cioè in sotterraneo.

In linea generale infatti, una volta superata quella forma di superstizione, largamente diffusa e che avversa l'utilizzo delle aree disponibili in sotterraneo, in
quanto vede in esse richiami agli "inferi" suscitando quindi irrazionali "timori", non vi sono sostanziali difficoltà che si oppongano a tale soluzione, salvo quelle che possono derivare dalle caratteristiche dei terreni.

Ed è appunto da queste considerazioni che nasce la necessità di una conoscenza capillare del sottosuolo cittadino che porti ad approfondire ogni aspetto della geologia urbana.

Geologia Urbana e suoi aspetti tecnico applicativi

Nel momento in cui venne presa coscienza (in Italia il 1986, ovvero l'anno d'istituzione del Ministero dell'Ambiente) che gli studi d'Urbanistica non potevano
avere come punto di riferimento i soli aspetti socio-economici, ma che dovevano invece tenere in considerazione anche gli aspetti fisici del territorio urbano, fu necessario considerare anzitutto i fattori "abiotici" che costituiscono l'ecosistema cittadino, ossia l'aria, l'acqua ed il suolo.

Ne conseguì quindi la necessità di riferirsi alle Scienze della Terra come punto di partenza su cui basare quelle analisi e quegli studi tesi, nella creazione di nuove zone di insediamento demografico o nello sviluppo di aree già destinate alla collettività cittadina, all'ottimizzazione delle condizioni più favorevoli alla vita dell'uomo.

E' necessario quindi precisare quali siano gli aspetti con cui la Geologia, più in particolare quella sua ramificazione solo recentemente formalizzata, che è la Geologia Urbana, si concretizzi.

In linea di massima pensiamo che essi possano essere sintetizzati in:

Litologia: intendendo la natura delle rocce e dei suoli che caratterizzano il territorio urbano, comprendendo anche le loro caratteristiche genetiche ed i rapporti evolutivi;

Tettonica: riferendosi in particolare alle deformazioni subite dalle rocce come conseguenza degli effetti delle forze interne alla superficie terrestre;

Geomorfologia: vale a dire le forme in cui le caratteristiche geologiche si manifestano in superficie, comprendendo in essa anche l'individuazione e la descrizione dei fenomeni di dissesto (frane) che l'evoluzione morfologica comporta, ovvero la Geodinamica di superficie;

Idrogeologia: ovvero lo studio delle caratteristiche e delle modalità con cui l'acqua è presente sia in superficie che nel sottosuolo;

Geognostica: la simbiosi tra specifici
macchinari ed attrezzature (sonde, carotieri, ecc.), particolari procedure di lavorazione e, soprattutto, risorse umane specializzate (operai e tecnici laureati) che permette di studiare il sottosuolo;

Geotecnica : la scienza moderna di competenza dell'ingegnere e del geologo che consente di definire, mediante modelli fisico-matematici, il comportamento del terreno s.l. in funzione delle specificità di un'opera prima da progettare e poi da realizzare.

Oltre ai metodi tradizionali di ricerca, un apporto essenziale allo studio degli aspetti della Geologia e della Geologia Tecnica sopra indicati è costituito dal telerilevamento. Vedremo infatti come i punti principali che li caratterizzano siano molto facilmente investigabili attraverso una visione da Iontano la quale, potendo offrire un quadro generale d'insieme, facilita l'individuazione di molte caratteristiche del terreno, anche cittadino.

Modalità che quindi cercheremo di analizzare in dettaglio.

Litologia

Ogni singola roccia, ovvero qualsiasi aggregato di minerali ${ }^{[I]}$ che, sotto forma di massa geologica indipendente, costituisce parte integrante della crosta terrestre (litosfera), ha un suo "scheletro" che, praticamente inesistente nelle sabbie, aumenta in linea generale la sua consistenza partendo dalle rocce sedimentarie (argille, marne, arenarie) per passare, attraverso le metamorfiche (marmi) a quelle ignee (intrusive = graniti, effusive = basalti) [II].

Ne derivano di conseguenza forme morfologiche totalmente diverse tra di loro: tanto più aspre ed acclivi tanto più serrati risulteranno i "vincoli di coesione" delle rocce e quindi tanto più dolci e
pianeggianti quanto più "lenti" risulteranno gli stessi vincoli.

Ciò dipendendo non tanto dalla "durezza" intrinseca delle stesse rocce, quanto piuttosto dalla loro stesse genesi.

Le prime, quelle cioè di origine sedimentaria, essendosi formate per "caduta", "accumulo" e successiva "diagenesi"[III], hanno vincoli di coesione generalmente più "labili" delle altre rocce e pertanto tendono a subire l'azione di disgregazione degli agenti atmosferici (naturalmente a parità delle caratteristiche esterne) assai più intensamente ed in tempi più contenuti. Si ha così che a tipi litologici diversi corrispondono morfologie diverse: ad esempio a tutti è ben nota la differenza di paesaggio corrispondente ad affioramenti limo-sabbiosi, ad esempio d'origine lacustre, da quella derivante da affioramenti di rocce metamorfiche o ignee, ad esempio le Apuane o zone alpine.

Queste diversificazioni, che spesso risultano evidenti anche ad un semplice esame visivo effettuato da terra, si esaltano notevolmente avendo l'opportunità di poterle esaminare dall'alto. Effetto questo che si può normalmente constatare osservando la Terra dall'aereo: si osservano una quantità di particolari morfologici che, da terra, non si erano notati.

Si sa poi che la Terra non sta ferma. Il continuo spostamento di masse determina non solo il corrugarsi delle formazioni rocciose, ma anche un loro scontrarsi ed accavallarsi, tanto che non è affatto raro trovare formazioni diverse tra loro in contatto anomalo ed anche sovrammesse. Anche per questo si hanno spesso, anche nelle aree ristrette di una zona urbana, forme morfologiche diverse a stretto contatto tra loro.

Tettonica

I movimenti evolutivi della "crosta terrestre" determinano lo spostamento delle formazioni geologiche intese, nel nostro caso specifico, come grandi masse di rocce. E^{\prime} inevitabile quindi che, come conseguenza, le rocce reagiscano piegandosi, nel caso ancora siano ad uno stato plastico, o fratturandosi nel caso in cui si trovino, come di norma avviene in superficie e quindi in "territori cittadini", in uno stato rigido.

Si registrano quindi due effetti dominanti:

- il crearsi sulla superficie di grandi linee che rappresentano la proiezione su di essa dei piani lungo i quali, un "masso roccioso" [IV] si frattura e si disloca (faglie);
- una fittissima serie di lineazioni che, anch'esse, rappresentano l'intersezione dei piani di fratturazione di ogni singola roccia sulla superficie.

Ambedue gli effetti di queste manifestazioni tettoniche rivestono una notevole importanza nella Geologia Urbana e sui suoi effetti negli sviluppi urbanistici.
E^{\prime} chiaro infatti come i primi, cioè le faglie, rappresentino il manifestarsi di un piano di rottura, lungo il quale quindi, se ancora perduranti, si possono manifestare gli effetti dei movimenti tellurici.

Risulta pertanto evidente come, nelle zone in cui la tettonica é attiva, sia prudente non prevedere su di esse, ed al loro contorno, costruzioni di edifici. Ciò anche in aree ritenute non interessate da tettonica attiva in quanto non è sempre chiaro quali possano essere le aree e zone dove tali effetti possano improvvisamente attivarsi o riattivarsi.

Di carattere apparentemente meno determinante, è l'importanza dell'intensità della fratturazione. Tuttavia è facile
comprendere come l'intensità del campo delle fratturazioni si ripercuota sulle caratteristiche meccaniche delle rocce. Cosa, che non solo è determinante negli scavi in sotterraneo, ma ha la sua importanza anche negli scavi in generale e, soprattutto, sulla tipologia stessa delle fondazioni degli edifici cittadini.

Geomorfologia

Abbiamo già detto come la Geomorfologia rappresenti lo studio e la descrizione delle forme della superficie terrestre e dei loro cambiamenti sotto l'influsso degli agenti esogeni [v] ovvero, per i casi di cui ora trattiamo, essenzialmente le acque, le variazioni termiche, il vento, gli attacchi chimici, la gravità. E' chiaro quindi come questo particolare aspetto rivesta una sicura importanza anche sotto l'aspetto delle caratteristiche geologiche (s.l.) di una città.

Basti pensare ad esempio a:

- l'andamento e l'azione dei corsi fluviali (caso eclatante: le "migrazioni" del Tevere!), ma anche dei semplici solchi di drenaggio superficiale;
- lo "sgretolamento" e la alterazione delle rocce sotto l'azione dei cicli di gelo e disgelo;
- l'azione d'erosione del vento su rocce e suoli che, oltre tutto, hanno spesso subito gli effetti dei fenomeni indicati al punto precedente;
- l'azione di dissolvimento dei calcari (carsismo), ma anche di dissoluzione dei gessi, ad esempio;
- gli effetti dell'azione gravitativa.

Soprattutto infine all'azione combinata dei punti sopra indicati che determinano:

- frane;
- erosione s.l., ma anche fluviale e marina;
- sprofondamenti;
- eventi alluvionali.

In altre parole tutto quanto è insito nel "modellamento evolutivo" della superficie della crosta terrestre.

Idrogeologia

Vale a dire lo studio delle acque superficiali e sotterranee in quanto facenti parte dei terreni ed agenti esogeni dei fenomeni geologici.

Il campo idrogeologico d'interesse non comprende solo l'andamento fluviale, l'azione del mare e le caratteristiche delle falde acquifere, ma anche le fonti d'approvvigionamento d'acqua delle città, le metodologie di realizzazione delle fondazioni ed i lavori sotterranei che interessino l'area cittadina.

Anche in questo campo l'aiuto del telerilevamento è sostanziale. Basti pensare come attraverso lo studio delle fotoaeree si abbia un'immediata visione:

- del reticolo idrografico di superficie;
- dei rapporti infra-formazionali e quindi tra formazioni a diversa permeabilità;
- del diverso grado di fratturazione all'interno di una stessa formazione;
- del diverso grado d'erosione.

Ovvero un notevole numero di informazioni che rendono possibile ricostruire un quadro d'insieme della permeabilità dei terreni affioranti e quindi di indirizzare eventuali nuove costruzioni nel comprensorio ciltadino verso zone ricche d'acqua, ma soprattutto (le città oggi sono generalmente fornite di acquedotti) verso aree in cui più difficile appaia l'inquinamento indiretto delle falde acquifere.

Geognostica

La geognostica è lo studio del sottosuolo operato utilizzando anche macchi-
nari che permettono di "portare in superfcie" testimoni di terreno, conosciuti di solito come "carote".

Partendo dall'esame visivo delle carote stesse, un buon geologo è in grado sia di redigere la stratigrafia del sondaggio, ascrivendo ciascun litotipo ad una formazione litologica conosciuta, sia di suddividere il sottosuolo investigato in intervalli di terreno a diverso comportamento meccanico.

Una buona programmazione delle indagini geognostiche, unita ad una corretta interpretazione dei dati che ne derivano, permette ai tecnici di essere condotti verso scelte progettuali sicure ed economiche. Studi condotti nei primi anni Ottanta (es. Tyrell) hanno infatti dimostrato come l'inesistenza / I'insufficienza di adeguate indagini in sito sia molto spesso la principale causa di incremento dei costi delle opere: come citato da Luis I. Gonzàlez De Vallejo "Le indagini in sito si pagano sempre, prima o poi ..."

Geotecnica

Mediante un'oculata programmazione delle indagini in sito (prove penetrometriche statiche e dinamiche, pressiometriche, assestimetriche, di permeabilità, ecc.) ed di laboratorio (prove di identificazione fisica, volumetriche, granulometriche, di compressibilità, di taglio, ecc.) è possibile ottenere i parametri geotecnici intrinsechi, necessari ed indispensabili per una corretta progettazione.

Le indagini in sito consentono di definire solo alcuni dei parametri in gioco, ma sono comunque estremamente utili poiché vengono investigati volumi di terreno significativi (es. prove di permeabilità).

Le prove geotecniche di laboratorio, partendo dal corretto prelievo di campioni indisturbati di terreno, hanno il vantaggio di poter ricreare i percorsi di carico a cui sarà sottoposto il terreno stesso, ad esempio, a seguito della realizzazione di una specifica opera.

Questo particolare settore è stato regolamentato dal legislatore che, attuando la direttiva 89/106/CEE, ha emanato il D.P.R. 246/93, seguito dalla circolare STC 349/99 dell'ex Min. LL.PP. (ora Ministero delle Infrastrutture e dei Trasporti) per la "Concessione ai laboratori per lo svolgimento delle prove geotecniche sui terreni e sulle rocce, ... ed il relativo rilascio dei certificati ufficiali". Tale circolare è stata meglio integrata dal recente Testo Unico Norme Tecniche per le costruzioni comparso sulla Gazz. Uff. Rep. It. n. 222 del 23/9/05: il quale prevede che, qualora la finalità sia la progettazione di opere pubbliche o private, le analisi geotecniche di laboratorio debbano essere eseguite soltanto dai laboratori che hanno ottenuto la Concessione da parte del Ministero delle Infrastrutture e dei Trasporti.

L'attuazione di queste normative obbliga i laboratori concessionati (sinora circa 25) a possedere e a mantenere nel tempo i seguenti principali requisiti:

1) assumere personale addestrato ad eseguire le prove secondo le normative di riferimento, con particolare riguardo ad un costante aggiornamento delle tecniche sperimentali: in particolare è prevista l'assunzione di almeno 3 Tecnici, oltre al Direttore del Laboratorio;
2) allestire locali idonei a consentire una corretta esecuzione delle analisi (es. assenza di vibrazioni, temperatura controllata, ecc.);
3) possedere strumentazioni idonee per numero e con caratteristiche tali da poter eseguire almeno tutte le prove geotecniche di routine;
4) tarare, almeno semestralmente e solo presso Università, le principali apparecchiature di misura di forza e di pressione;
5) operare in regime di qualità secondo la ISO 9001:2000: ciò permette una migliore gestione aziendale seguendo procedure codificate e standardizzate.
E^{\prime} opportuno infine sottolineare che i sei aspetti geologici indicati, Litologia, Tettonica, Geomorfologia, Idrogeologia, Geognostica e Geotecnica sono stati trattati separatamente solo per schematizzazione ma, all'atto pratico, non sono assolutamente separabili tra di loro, ma anzi interagiscono di continuo.

Basti pensare ad esempio ad un episodio di dissesto: esso certamente dipende dal tipo litologico e dalle sue deformazioni, ma certamente anche dalle sue caratteristiche geomorfologiche ed idrogeologiche; infine il dissesto stesso deve essere indagato ai fini della parametrizzazione dei terreni mediante indagini geognostiche e geotecniche.

Il concetto di eterotropicità delle città

Un altro aspetto molto importante é quello relativo al concetto di "eterotropicità" collegato alle città.

Infatti, se prendiamo in considerazione una bella definizione di città quale: "un'area che rappresenta quello spazio organizzato dall'uomo in cui si viene a creare una collettività con un accentramento amministrativo, culturale ed economico, ed il cui risultato è un aggregato di costruzioni più o meno pianificato"
(e caratterizzato da condizioni ambientali diverse da quelle dell'ecosistema naturale che la circonda), salta subito agli occhi un concetto molto semplice, ma spesso trascurato: la città non è in grado di trarre le sue fonti di sopravvivenza nel suo territorio, ma ha bisogno di rifornirsi in un territorio più ampio di quello che la circonda.
E^{\prime} chiaro quindi che parlando del territorio cittadino non ci si può limitare a quello circoscritto dalle mura della città, ma si deve considerare l'intera zona da cui essa trae la sua sopravvivenza.

Ciò è tanto più vero quando si parli, come nel nostro caso, di territorio geologico che, ovviamente, è difficilmente circonscrivibile in limiti ristretti.

Il concetto è ovvio, ma tale da costringerci ad allargare ancora il nostro discorso, a partire ad esempio:

- dalla necessità d'apporto d'acqua;
- dalle cave necessarie ai materiali da costruzione.

Il caso specifico di Roma

Da questo breve excursus relativo ai singoli aspetti geologici che influiscono sul territorio urbano, si intuisce che il tema si va allargando quasi a macchia d'olio, nel senso che, tanto più ci si addentra in esso tanto più aumentano i confini.

Vediamo quindi se si riesce a dare un quadro abbastanza chiaro e completo facendo riferimento al caso reale, a noi così vicino, di Roma.

Roma, infatti, è indubbiamente una città divertente anche da un punto di vista strettamente geologico.

Dal Pleistocene infatti tutta la Valle del Tevere cambiò radicalmente a seguito della messa in posto di colate piroclastiche ${ }^{[V I]}$ che ne deviarono l'andamento
portandolo alla situazione attuale. Successive forti erosioni, dovute all'abbassamento del livello marino, determinarono una progressiva erosione delle piroclastiti ed il deposito dei sedimenti fluviali caratteristici della valle del Tevere.

L'esame di una qualsiasi sezione geologica trasversale, quale ad esempio quella mostrata dal Vaticano a Piazza Navona, da atto della situazione.

Litologica: coltri piroclastiche sui rilievi ricoprono una serie di cicli sedimentari pre-vulcanici (soprattutto limi, argille e sabbie) che a loro volta sovrastano una formazione argillosa pliocenica di base. Nella valle alluvionale del Tevere i cicli sedimentari sono sostituiti da quelli fluviali olocenici, Tevere che ha prima eroso e poi sedimentato.

Assieme al Tevere anche i suoi affluenti hanno eroso strette valli, poi ricoperte da sedimenti alluvionali recenti: ciò ha dato luogo a quel fenomeno tipico di Roma, le "marane", ovvero profondi solchi erosivi $\left.{ }^{[V I I}\right]$ successivamente riempiti
da terreni argillo limosi a luoghi torbosi, che spesso creano gravi preoccupazioni nel corso di progettazione delle infrastrutture, ma soprattutto, nel corso della costruzione di edifici, [VIII]

Tettonica: le stesse sezioni ci danno modo di individuare tutta una serie di faglie parallele al Tevere, ma anche ad esso ortogonali, che interessano l'area urbana e che spesso coincidono con i versanti dei principali rilievi.

Idrogeologia: il bed-rock ${ }^{[\mathrm{IX}]}$ argilloso agisce da "aquiclude" alle falde acquifere superficiali che interessano gli orizzonti più permeabili dei sedimenti (ciottoli, sabbie) anche fluviali e piroclastici (pozzolane o zone "fratturate di tufo).

Geomorfologia: dissesti gravitativi dei maggiori rilievi, nelle sabbie di Monte Mario ad esempio, l'andamento idrografico del Tevere e dell'Aniene, le loro aree preferenziali di erosione e deposito, le probabili zone d'esondazione del Tevere e dell'Aniene, a monte e a valle dei muri di protezione.

E-SE|W

Figura2 - Sezione Geologica (da Carta Geologica del Centro Storico di Roma - Dipartimento di Scienze Geologiche, Università di Roma Tre).

Geognostica: una corretta programmazione ed esecuzione delle indagini in situ ha contribuito alla risoluzione di alcune problematiche "romane" relative alle 4 materie sopra indicate. Ad esempio le indagini geognostiche hanno permesso:

- la ricostruzione del limite stratigrafico tra le argille plioceniche di base e le sovrastanti coperture alluvionali del Tevere, le successioni sedimentarie pleistoceniche, le coltri vulcaniche, ed anche la buona definizione dello spessore, oltre che della tipologia, dei riporti antropici;
- il riconoscimento macroscopico di elementi di neotettonica nelle carote di terreno analizzate;
- la definizione specifica (livello di falda e sue oscillazioni) dei quattro differenti complessi idrogeologici presenti nei sedimenti pleistocenici, nelle vulcaniti, nei depositi alluvionali e nei terreni di riporto, mediante la messa in opera di piezometri ed il loro successivo monitoraggio;
- la miglior caratterizzazione di alcuni dissesti gravitativi.

Geotecnica: una costante assistenza geologico - geotecnica durante la realizzazione di molti parcheggi sotterranei del P.U.P. (Piano Urbano Parcheggi di Roma) ha consentito "in diretta" la risoluzione delle problematiche geotecniche che via via si sono presentate.

Unitamente a questo, molti altri casi nella capitale hanno goduto del perfetto mix di una corretta progettazione geotecnica in simbiosi con una costante verifica in corso d'opera: ciò sta portando ad una sempre migliore definizione della conoscanza del sottosuolo (IV dimensione), permettendo di ridurre quella naturale diffidenza che è spesso presente tra la gente comune.

Riferimenti bibliografici

1) AMANTI M., GISOTTI G., PECCI M. (1995) I dissesti a Roma. In Mem. Descr. Carta Geol. d'It., L, 215-248, Roma.
2) ARNOLDUS-HUIZENDVELD A., CORAZZA A., DE RITA D., ZARLENGA F. (1997) - II paesaggio geologico ed i geotopi della Campagna Romana. Quaderni dell'Ambiente, 5, Fratelli Palombi Ed., Roma.
3) BRANCALEONI R., CORAZZA A., GARBIN F., LEONE F., MORASCHINI C., SCARAPAZZI M. (2003) - Il rillevo di M. Mario a Roma: sviluppo urbanistico e dissesti. Un caso di Geologia Urbana. In Geologia dell'Ambiente, n. 1, SIGEA, Roma
4) CARBONI M.G., FUNICIELLO R., PAROTTO M., MARRA F., SALVI S., CORAZZA A., LOMBARDI L., FEROCI M. (1991)-Geologia e idrogeologia del centro storico di Roma. Progetto Strategico Roma Capitale, CNR.
5) COMMISSIONE VALUTAZIONE RISCHI AMBIENTALI (1994) - L'ambiente nel centro storico e a Roma. Secondo Rapporto: il suolo/sottosuolo. Comune di Roma, Dipartimento delle Politiche Territoriali, Roma.
6) COMUNE DI ROMA (1997) - Relazione sullo stato dell'ambiente a Roma. Maggioli Ed., Roma.
7) CORAZZA A., GIULIANO G. (1994) - Idrogeologia e vulnerabilità delle risorse idriche della città di Roma. L'ambiente del centro storico e a Roma, Secondo Rapporto: il suolo/sottosuolo. Comune di Roma, Roma.
8) CORAZZA A., LOMBARDI L. (1995) - Idrogeologia dell'area del centro storico di Roma. In Mem. Descr. Carta Geol. d'It., L, 173-211, Roma.
9) CORAZZA A., LEONE F., MAZZA R. (2002) Il quartiere di Monteverde a Roma: sviluppo urbanistico e dissesti in un'area urbana. Geologia dell'Ambiente, anno X, n.1, 8-18, SIGEA, Roma.
10) DE ANGELIS D'OSSAT G. (1942) - Nuove sezioni geologiche dei Colli di Roma. Boll. Soc. Geol. It., 61, Roma.
11) DI LORETO E. \& GISOTTI G. (1994) - Geologia e idrologia urbana. Verde Ambiente, n. 6 (Speciale Roma), Roma.
12) FACCENNA C., FUNICIELLO R. \& MARRA F. (1995) - Inquadramento geologico strutturale dell'area romana. In Mem. Descr. Car-
ta Geol d'It., L, 31-118, Roma.
13) FUNICIELLO R., MARRA F. \& PAROTTO M. (1993) - Attraverso la città di Roma. In Guide Geologiche Regionali, vol. 5, "Lazio", Società Geologica Italiana, 229-245, Roma.
14) GEOPLANNING S.r.I. (1999) - Relazione geologico-tecnica: indagini geognostiche e georadar nel giardino di Villa Mazzanti - Roma. Relazione inedita.
15) GIGLI E. (1971) - Cosa c'è sotto Roma? Monte Mario Vaticano Gianicolo un'origine comune. Capitolium, 46, (7/8), Roma.
16) GISOTTI G. \& ZARLENGA F. (1998) - La geologia della città di Roma tra urbanistica e archeologia. Geologia dell'Ambiente, 4, SIGEA, Roma.
17) INSOLERA I. (1962) - Roma moderna, un secolo di storia urbanistica. Piccola Biblioteca Einaudi, Giulio Einaudi editore S.p.A., Torino.
18) MARRA F. \& ROSA C. (1995) - Stratigrafia e assetto geologico dell'area romana. In Mem. Descr. Carta Geol. d'It., L, 49-112, Roma.
19) MARRA F., CARBONI M.G., DI BELLA L., FACCENNA C., FUNICIELLO R. \& ROSA C. (1995 a) - Il substrato plio-pleistocenico nell'area romana. Boll. Soc. Geol. It., 114, 195-214, Roma.
20) MORASCHINI C. (1998) - Proposta di recupero ambientale dell'area di Villa Mazzanti e di Villa Mellini. Bollettino della Biblioteca della Facoltà di Architettura dell'Università degli Studi "La Sapienza" di Roma, n. 5859, Cangemi Editore.
21) PAZZAGLI G., MAURI M.P. (2002) - Urbanistica, piani regolatori e conoscenza del sottosuolo. In Geologia dell'Ambiente, n. 1, SIGEA, Roma
22) SERVIZIO GEOLOGICO NAZIONALE (1995) - La Geologia di Roma. Il Centro Storico. Mem. Descr. Carta Geol. d'It., L, Roma.
23) VENTRIGLIA U. (1971) - La geologia della città di Roma. Amm. Prov. di Roma, Roma.

Note

[I]E' opportuno rimarcare che nella definizione "geologica" di roccia non c'è il concetto di vincoli di coesione. Ovvero anche la sabbia è roccia.
[II] Naturalmente in larga linea di massima: basti pensare ad esempio alle pozzolane che,
pur essendo rocce ignee effusive, non hanno vincoli di coesione esattamente come le sabbie.
[III] Si intende per "diagenesi" il "complesso di trasformazioni fisiche e chimiche che avvengono in un sedimento durante e dopo la deposizione. A questo punto non ci si può esimere da aprire una parentesi. La Geologia, come per altro quasi tutte le Scienze, adopra un po' per semplicità d'intesa, un po' per quello "snobbismo" culturale che ci portiamo dietro dalla cultura ottocentesca, un suo particolare "linguaggio" che, se da una parte semplifica I'intesa tra gli addetti ai lavori, da l'altro rende molto difficile la comprensione dei problemi da parte di chi non sia uno specialista. Sta quindi a chi non studia la Scienza di per se stessa, ma piuttosto ne segue le applicazioni pratiche, ad abbandonare quel linguaggio e tradurlo in termini comuni. Cosa che molto spesso si dimostra assai più difficile di quanto si possa pensare!
[IV] Assai più frequentemente formazioni etereogenee di rocce diverse. In geomeccanica però si intende per "masso roccioso" l'insieme di rocce che interessano un singolo fenomeno od una struttura.
[V] Ovvero di quei processi geologici che avvengono, o hanno la loro origine, sulla crosta terrestre
[VI] Con "Piroclastico" si intendono manifestazioni vulcaniche esplosive con lancio di solidi e di fluidi nell'atmosfera: questi ultimi danno luogo alla messa in posto di tufi ed pozzolane
[VII] Personalmente, ci siamo imbattuti più volte nelle marane ed in particolare nel corso di costruzione dell'Asse di Infiltrazione cittadina della Roma - L'Aquila dove individuammo, nei pressi di Viale Palmiro Togliatti, una marana i cui terreni di riempimento (limi -argillosi con torba non consolidati] oltrepassavano i 60 metri di spessore!
[VIII] In diverse occasioni, questa volta dalle parti di Roma a SW, ovvero tra la città ed il mare, dovemmo constatare gravissimi fenomeni d'instabilità in edifici fondati parte su terreni piroclastici, parte su riempimenti di "marane".
[IX] Si intende con bed-rock la formazione geologica, generalmente più antica, su cui si poggiano le formazione geologiche di superficie.

I terreni di Roma sotto l'aspetto della geologia tecnica

Giuseppe Cavarretta, Gian Paolo Cavinato, Marco Mancini, Massimiliano Moscatelli, Antonio Patera, Giuseppe Raspa, Francesco Pio Stigliano, Roberto Vallone, Daiane Folle, Fabio Garbin, Salvatore Milli, Sergio Storoni Ridolfi

Introduzione

Idiversi soggetti istituzionali e privati che a vario titolo sono interessati alle valutazioni di rischio geologico e alla progettazione di opere di ingegneria nella città di Roma si trovano spesso nella difficoltà di acquisire e interpretare i dati geognostici. Tale difficoltà è dovuta alla grande variabilità litologica, stratigrafica e geotecnica delle formazioni sedimentarie e vulcaniche affioranti e presenti nel sottosuolo. Un'ulteriore complicazione è dovuta alla presenza dei terreni di riporto che, in circa 3000 anni di attività antropica, hanno ricoperto con spessori

Giuseppe Cavarretta, Direttore dell'Istituto di Geologia Ambientale e Geoingegneria del CNR, Roma
Gian Paolo Cavinato, Ricercatore. CNR-IGAG, Roma
Marco Mancini, Ricercatore. CNR-IGAG, Roma
Massimiliano Moscatelli, Ricercatore. CNR-IGAG, Roma
Antonio Patera, Ricercatore. CNR-IGAG, Roma
Giuseppe Raspa, Professore di Geostatistica Applicata, Università La Sapienza, Roma
Francesco Pio Stigliano, Ricercatore. CNR-IGAG, Roma
Roberto Vallone, Ricercatore. CNR-IGAG, Roma
Daiane Folle, Dottoranda. Università La Sapienza, Roma
Fabio Garbin (cfr. pag. 23)
Salvatore Milli, Professore associato di Sedimentologia, Università La Sapienza, Roma
Sergio Storoni Ridolfi, Docente incaricato di Geologia Applicata alle vie di comunicazione, Università degli Studi di Roma Tre
variabili i depositi sottostanti.
La città di Roma, tra tutte le grandi metropoli, costituisce pertanto un "laboratorio geologico e geotecnico unico" e, se la variabilità stratigrafica è già stata definita (cfr. Funiciello, 1995; Ventriglia, 2002), manca ancora una "codifica geo-logico-tecnica" per l'intera area urbana del comune di Roma.

Il progetto qui descritto mira pertanto a correlare e rendere tra loro organici i dati geotecnici in possesso di diversi soggetti istituzionali e privati, realizzando una banca dati geotecnica dei terreni della città di Roma. La banca dati è in grado di soddisfare le diverse esigenze degli Enti locali per finalità di valutazione dei rischi, di pianificazione e di progettazione, nonché quelle delle imprese impegnate nella realizzazione di grandi opere civili e dei professionisti che operano nel settore della geognostica e della geotecnica. Il geotecnico pertanto, potendo usufruire delle informazioni archiviate nella banca dati, sarà in grado di pianificare al meglio ogni singola campagna di indagine ottimizzando sia i tempi sia le risorse economiche.

Altrettanto rilevante è l'elaborazione statistica dei dati geotecnici al fine di ottenere stime attendibili di parametri in zone prive di informazioni. In questo modo è possibile produrre una cartografia tematica finalizzata sia a una corretta pianificazione territoriale sia a una valutazione del rischio sismico.

Progettazione e realizzazione del sistema informativo geografico

Un sistema informativo geografico (GIS) è uno strumento software che permette di posizionare e analizzare ogget-
ti ed eventi che si verificano sul globo terrestre. La tecnologia GIS integra le normali operazioni effettuate sulle banche dati, quali ricerche e analisi statistiche, con le funzionalità proprie dei GIS, come l'archiviazione, il trattamento, l'analisi e I'estrazione delle informazioni geografiche per la creazione di grafici e di carte tematiche. Tali capacità distinguono i GIS da altri sistemi informativi e ne fanno uno strumento rivolto ad un'ampia gamma di utenti pubblici e privati che hanno la necessità di visualizzare e analizzare informazioni geografiche per spiegare e prevedere eventi, fornire risultati e pianificare strategie.

Il sistema informativo geografico creato per questo lavoro di ricerca è stato strutturato in modo da permettere l'acquisizione, la gestione e l'aggiornamento di informazioni sia in formato vettoriale sia raster. Nucleo e parte integrante del sistema è la banca dati geolo-gico-geotecnica contenente informazioni stratigrafiche del sottosuolo, dati litologici, geotecnici e idrogeologici.

La fase iniziale del progetto ha previsto la raccolta, la revisione e l'omogeneizzazione dei dati litologici, geotecnici e idrogeologici messi a disposizione sia da Enti pubblici (principalmente APAT e Comune di Roma) sia da imprese private (MetroRoma, Geoplanning, S.G.S. Studio Geotecnico Strutturale, S.I.G. Studio Indagini Geotecniche, IGES s.n.c.) o reperiti in letteratura. Le informazioni sia geografiche sia tabellari sono state archiviate in uno specifico database relazionale di tipo Microsoft Access, detto geodatabase, gestito dal software ArcGIS 9 della ESRI. Il software è stato inoltre utilizzato per tutte le operazioni di
gestione e analisi dei dati geografici sia raster sia vettoriali, archiviati nella proiezione Universale Trasversa di Mercatore - Zona 33 con sistema geodetico di riferimento European Datum 1950.

In merito ai dati geografici in formato digitale immessi nel sistema, si è tenuto conto che tematismi provenienti da diverse fonti non sono sempre perfettamente sovrapponibili tra di loro, presentando talvolta sfalsamenti di vari metri. Per minimizzare l'errore e avere la massima omogeneità di informazioni è necessario quindi utilizzare dati provenienti da una medesima fonte o con una stessa origine o ricondurre tutte le informazioni disponibili a una base topografica
comune. A tal fine è stata scelta come base topografica la Carta Tecnica Regionale (CTR) della Regione Lazio, utilizzata come base nella maggior parte dei lavori presi in esame che, con una scala di $1: 10.000$, è particolarmente adatta all'analisi dell'area in studio. Come modello digitale del terreno (DTM) è stato utilizzato quello fornito dalla Regione Lazio, con maglia di 20 metri.

Schema della banca dati

La banca dati geologico-geotecnica è stata strutturata secondo le tecniche di modellazione object-oriented. Al momento sono presenti 8004 sondaggi (Fig. 1), con oltre 35000 record relativi

Figura 1 - Tematismi immessi nel sistema informativo. In grigio scuro sono indicati gli oltre 8000 sondaggi presenti nella banca dati.
alla stratigrafia e circa 12000 riferiti alle informazioni di tipo geotecnico.

Lo schema della banca dati, di tipo gerarchico, ha una struttura semplice ed è facilmente estendibile rispetto all'introduzione di nuovi dati e nuovi attributi delle tabelle, in modo tale da potere essere facilmente comprensibile anche da operatori poco esperti. Lo schema è mostrato nella figura 2.

Attraverso semplici interrogazioni scritte nel linguaggio SQL è possibile interrogare la banca dati per fini diversi, quali rappresentazioni cartografiche tematiche o l'estrazione delle informazioni
sulla base di specifiche richieste per l'analisi spaziale dei parametri geologicogeotecnici e idrogeologici. Ad esempio, è possibile selezionare i vari orizzonti stratigrafici principali in rapporto con gli orizzonti posti superiormente o inferiormente, calcolare gli spessori delle unità stratigrafiche o caratterizzare la distribuzione spaziale dei litotipi.

Elaborazione delle informazioni geologiche

La fase di acquisizione e informatizzazione dei dati è stata avviata contemporaneamente alla revisione dell'assetto

Figura 2 - Schema della banca dati geologico-geotecnica. Il tematismo vettoriale puntuale Ubicazione dei sondaggi (rappresentato con la tabella GIS nella figura), contenuto nel sistema informativo geografico, è collegato con una relazione $1: 1$ con la tabella Sondaggi che si trova al centro delle relazioni presenti nella banca dati. Da Sondaggi si dipartono le associazioni con cardinalità variabile da $1: 0 . . . \mathrm{M}$ con le tabelle contenenti i metadatio le informazioni ausiliarie relative a ogni sondaggio e le relazioni con i dati stratigrafici e geotecnici. Ogni informazione geotecnica è riferita all'intervallo stratigrafico nel quale sono state effettuate le prove (Pocket, Pressiometrica, SPT, Vane) oppure sono stati prelevati i campioni (Campioni).
stratigrafico del sottosuolo di Roma. Al fine di valutare la distribuzione spaziale delle diverse proprietà geologiche e geotecniche, le informazioni di superficie e di sottosuolo sono state integrate e gestite tramite il software di modellazione tridjmensionale 3DEarthVision della Dynamic Graphics, interfacciato con ArcGIS 9. La modellazione tridimensionale presenta il vantaggio di essere facilmente comprensibile anche da parte di specialisti di altre discipline e può essere utilizzata in fase di pianificazione e progettazione. Questo tipo di ricostruzioni costituisce, inol-
tre, un valido supporto all'analisi delle geometrie deposizionali e alla rappresentazione della variabilità spaziale dei caratteri geotecnici dei terreni.

Per realizzare il modello geologico sono stati selezionati dalla banca dati oltre 2000 sondaggi geognostici e sezioni stratigrafiche di campagna (Fig. 3). I dati di superficie e di sottosuolo sono stati interpretati e correlati. Oltre 90 pannelli di correlazione sono stati realizzati utilizzando uno schema litostratigrafico, risultato della consultazione, esame critico e sintesi dell'ampia letteratura scientifica

Figura 3 - Ubicazioni dei sondaggi utilizzati per la realizzazione del modello geologico e tracce dei pannelli di correlazione.

I terreni di Roma sotto l'aspetto della geologia tecnica

Figura 4 - Schema stratigrafico di sintesi dell'area romana. Modificato da Milli (1997).
(Figg. 3 e 4). Otto unità litostratigrafiche informali sono state riconosciute nel sottosuolo di Roma: Unità di Monte Vaticano (MV, Pliocene), Unità di Monte Mario (MM, Pleistocene inferiore), Unità di Ponte Galeria-Paleotevere (PGT, Pleistocene medio), Unità delle Vulcaniti sabatine e albane e Unità delle Alluvioni antiche (rispettivamente VT e AA, Pleistocene medio), Unità delle Alluvioni terrazzate (AT, Pleistocene medio-superiore), Unità delle Alluvioni recenti (AR, Olocene), Unità dei Riporti antropici (RP).

Le descrizioni litologiche relative ai sondaggi e alle sezioni stratigrafiche sono state codificate dopo l'archiviazione nella banca dati utilizzando le informazioni desunte dalle correlazioni. A ogni record corrisponde un codice alfanumerico, nel quale le prime due lettere fanno riferimento all'unità stratigrafica, mentre i numeri indicano il tipo di litologia/tessitura (Fig. 5). Tramite interrogazioni scritte nel linguaggio SQL, è stato possibile estrarre le informazioni per l'analisi spa-
ziale dei diversi parametri geologici. Una prima elaborazione delle informazioni estratte dalla banca dati ha consentito di realizzare, per tutte le unità stratigrafiche riconosciute, carte preliminari degli spessori e carte delle isobate delle superfici basali. Le correlazioni e le codifiche della banca dati sono state progressivamente corrette verificando in continuo le informazioni elaborate.

Il modello geologico-stratigrafico definitivo, derivato da questa procedura iterativa di elaborazione e controllo, è coerente con l'assetto geologico definito dagli Autori precedenti (Ambrosetti \& Bonadonna, 1966; Bonadonna, 1968; Funiciello, 1995; Marra \& Rosa, 1995; Milli, 1997). Un'analisi attenta dei pannelli di correlazione, delle carte dei limiti inconformi tra le diverse unità stratigrafiche e delle carte di variazione degli spessori ha permesso di definire in modo dettagliato l'evoluzione tettonico-sedimentaria del sottosuolo della città di Roma negli ultimi 2 Ma , con particolare
riguardo alla Unità delle Alluvioni recenti (ultimi 18 ka).

L'evoluzione morfologica del reticolo idrografico del Tevere e dei suoi affluenti, come appare oggi, e l'architettura deposizionale del sistema fluvio-deltizio sono la conseguenza della variazione relativa del livello del mare negli ultimi 18 ka (Bellotti et al., 1994, 1995). La morfologia della discontinuità basale associata a questa variazione è stata ricostruita utilizzando la geologia di superficie e le informazioni dei sondaggi che interessano le alluvioni recenti. Questa analisi, inoltre, ha

Litologia/tessitura	Codice	Associazione di litologie/tessiture
Ghiaia	AR1	Ghiaie e ghiaie sabbiose
Ghiaia con sabbia	AR1s	
Sabbia	AR2	Sabbie e sabbie limose con ghiaia
Sabbia con ghiaia	AR2g	
Sabbia con limo	AR2I	
Sabbia di origine vulcanica	AR2v	
Sabbia con torba	AR2t	
Alternanza sabbia-ghiaia	AR13	
Limo	AR3	Limie limi sabbiosi con resti organicl
Limo di origine vulcanica	AR3v	
Limo con sabbia	AR14	
Limo con torba	AR3t	
Argilla	AR4	Limi argillosie argille con sabbla
Argila con sabbia	AR4s	
Alternanza sabbia-argilla	AR24	
Argilla con torba	AR4t	Argille organiche e torbe
Torba	AR6	

Figura 5 - Esempio di classificazione litologico-tessiturale per I'Unità $A R$. permesso di definire l'organizzazione stratigrafica e le geometrie dei corpi deposizionali. Tre intervalli stratigrafici, in particolare, sono stati distinti nei depositi alluvionali della valle del Tevere (Unità AR) tra le tratte nord e sud del Grande Raccordo Anulare (di seguito GRA), cosi disposti in successione stratigrafica:

1) le ghiaie basali, con un limite inferiore compreso tra -35 m slm a nord e 60 m a sud e con spessori variabili, negli stessi settori, tra 5-10 m e 20-25 m;
2) un corpo intermedio costituito da limi e argille organiche con lenti di sabbie e ghiaie, che ha spessore variabile tra 20 m a nord e 40 m a sud e che mostra una netta diminuzione granulometrica e un arricchimento in materia organica nella stessa direzione;
3) sabbie, limi e argille superiori, con spessori pressoché costanti di 20-25 m da nord a sud, che costituiscono i deposti di chiusura dell'Unità AR.

Le alluvioni recenti, come pure tutti i depositi associati alle unità più antiche, sono ricoperti da una coltre di riporti antropici (Unità RP), che ha uno spessore massimo (oltre 20 m) in corrispondenza del centro storico della città.

Elaborazione delle informazioni geotecniche

L'elaborazione del modello geologico è stata preliminare alla creazione del modello geotecnico che è basato sul riconoscimento di corpi litologicamente omogenei all'interno di ciascuna unità stratigrafica precedentemente definita. Di questi corpi omogenei vengono definiti i caratteri geometrici e i parametri geomeccanici. Il modello geotecnico cosi realizzato, integrato con un modello idrogeologico adeguato, costituisce un valido supporto nella fase di progettazione preliminare di piccole e grandi
opere, soprattutto in termini di programmazione della fase esecutiva delle indagini.

La modellazione geotecnica è stata avviata per tutte le unità stratigrafiche riconosciute. Questioni di opportunità, relative alla rilevanza dei fattori di rischio geologico, hanno tuttavia indirizzato prioritariamente l'attenzione verso I'Unità AR all'interno del GRA. La scelta di realizzare il modello geotecnico delle alluvioni recenti è stata anche condizionata: a) dall'assenza di deformazione tettonica; b) dall'ampia disponibilità di sondaggi, presenti in massima parte lungo l'asta fluviale del Tevere (oltre 2000 sondaggi geognostici, di cui circa 950 con informazioni geotecniche); c) dal fatto che questi terreni ospitano le fondazioni di molti edifici storici e monumenti e sono attraversati da tutte le linee della metropolitana (le Linee A e B, nonché la futura Linea C).

All'interno dei depositi alluvionali recenti sono state distinte 19 classi litolo-gico-tessiturali che sono state raggruppate in 5 associazioni (Fig. 5): 1) ghiaie e ghiaie sabbiose, 2) sabbie e sabbie limose con ghiaia; 3) limi e limi sabbiosi con resti organici; 4) limi argillosi e argille con sabbia; 5) argille organiche e torbe. Le informazioni estratte dalla banca dati, codificate in base alle classi e alle associazioni appena definite (vedi paragrafo precedente), sono state analizzate con metodologie geostatistiche per ricostruire la variabilità spaziale dei caratteri litologico-tessiturali. L'analisi dei parametri fisico-meccanici delle alluvioni è attualmente in corso di realizzazione. Al fine di identificare una metodologia idonea alla ricostruzione spaziale delle caratteristiche geomeccaniche (in questa
fase coesione drenata e angolo di attrito drenato) è stata effettuata un'elaborazione preliminare dei dati geognostici.

I campioni analizzati per la determinazione dei parametri fisici e meccanici, nel seguito chiamati anche geomeccanici, sono oltre 950. Le determinazioni hanno interessato complessivamente 25 parametri, di cui 13 di tipo fisico e 12 di tipo meccanico. A causa della differente provenienza delle informazioni e della diversa disponibilità di parametri, le determinazioni non hanno interessato sistematicamente tutti i campioni. I parametri più rappresentati, con numeri sufficienti da consentire delle elaborazioni d'insieme, sono i 13 parametri fisici e i due più importanti parametri meccanici. I parametri fisici analizzati sono: peso per unità di volume (PvKnm3), peso per unità di volume della parte solida (PvSKnm3), contenuto d'acqua naturale (WnPerc), limite liquido (LIPerc), limite plastico (LpPerc), indice plastico (IP), indice di consistenza (IC), indice di attività colloidale (A), indice dei vuoti (EO), frazioni granulometriche di ghiaia (GhiaiaPerc), sabbia (SabbiaPerc), limo (LimoPerc) e argilla (ArgillaPerc). I parametri meccanici sono l'angolo di attrito drenato da prove di taglio diretto (PhidTd) e coesione drenata da prove di taglio diretto (CdKpaTd). I campioni in cui sono disponibili le misure di tutti e 15 i parametri sono 55 (prevalentemente argillosi), mentre i campioni provvisti delle due misure meccaniche sono 328. I campioni corredati delle 13 misure fisiche sono invece 125 e il loro numero sale a 863 se le determinazioni fisiche si riducono alle quattro frazioni granulometriche.

Come si evince dall'esame degli scatterplot riportati nella Figura 6, che evi-
denziano l'andamento con la profondità dell'angolo di attrito drenato e della coesione drenata, la ricerca di possibili legami tra le 19 litologie e i 2 parametri meccanici ha portato a risultati difficilmente interpretabili, se si eccettua la diversa variabilità della coesione drenata nelle sabbie e nelle sabbie limose. Gli scatterplot riportano i valori di coesione drenata e angolo di attrito drenato, differenziati secondo 6 e non 19 litologie poiché le restanti tredici sono rappresentate in maniera frammentaria nei 328 campioni.

Figura 6 - Scatterplot profondità/coesione drenata (colonna a sinistra) e profondità/angolo di attrito drenato (colonna a destra)

Molto probabilmente la mancanza di un legame evidente tra litologie e caratteristiche meccaniche è dovuta al fatto che, mentre i parametri fisico-meccanici si riferiscono a campioni di 0.5 m di lunghezza, le litologie si riferiscono a spessori generalmente variabili e dell'ordine di svariati metri.

Anche la variazione sistematica dei parametri geomeccanici con la profondità sembra, a un primo esame, esclusa: solo l'angolo d'attrito drenato, limitatamente alle litologie del gruppo dei limi argillosi e argille, mostra di avere un limite massimo di 30 gradi dopo i 20 m di profondità. Questo aspetto e la differenza di comportamento dell'angolo d'attrito drenato per le sabbie e sabbie limose saranno oggetto di approfondimento.

Con l'intento di sfruttare le informazioni disponibili per la ricostruzione dei parametri meccanici, si è passati allo studio del legame statistico tra questi e i parametri fisici. Si è cominciato con un'Analisi in Componenti Principali (ACP) con-
siderando come variabili attive i 13 parametri fisici e come supplementari quelli meccanici. Per tale motivo sono stati utilizzati i 55 campioni provvisti di informazione completa.

Per effetto della ridondanza delle informazioni, dovuta alle correlazioni esistenti tra le variabili, si è ottenuto che i primi 5 fattori dell'Analisi spiegano oltre I'85\% dell'intera variabilità. Il loro significato rispetto alle variabili può essere dedotto dalla Tabella 1 che riporta i coefficienti di correlazione tra le variabili (attive e supplementari) e i primi 5 fattori.

Il Fattore 1, che spiega il 29.15% della variabilità totale, è dominato da 3 parametri fortemente correlati tra di loro: il contenuto in acqua, l'indice dei vuoti e il peso per unità di volume. Il fattore è debolmente correlato sia con l'angolo d'attrito drenato sia con la coesione drenata.

Il Fattore 2, che spiega il 24.53% della variabilità totale, è dominato dal contenuto di argilla, dal limite liquido e dal-

I terreni di Roma sotto l'aspetto della geologia tecnica

	FATTORE				
$\mathbf{1}$	FATTORE $\mathbf{2}$	FATTORE $\mathbf{3}$	FATTORE $\mathbf{4}$	FATTORE $\mathbf{5}$	
PvKnm3	0.8337	0.4020	0.1285	0.0028	-0.1077
PvSKnm3	0.3904	-0.1549	-0.4364	0.4246	0.0697
WnPerc	-0.9098	-0.3516	0.0313	-0.0346	0.0644
LIPerc	-0.0418	-0.7822	0.5393	0.1761	-0.1146
LpPerc	-0.4872	-0.0909	$\mathbf{0 . 3 7 9 5}$	0.7460	-0.0538
$\mathbf{I P}$	0.3386	-0.7368	0.2619	-0.4033	-0.0753
$\mathbf{I C}$	0.7434	-0.0758	0.4041	0.4206	-0.1087
\mathbf{A}	-0.2627	0.3252	0.6070	-0.3992	-0.1968
$\mathbf{E 0}$	-0.8723	-0.4053	-0.1063	0.0393	0.1510
GhiaiaPerc	-0.3506	0.2591	0.1423	0.0354	-0.7424
Sabbia Perc	-0.3595	0.5229	-0.4495	0.0997	-0.3071
LimoPerc	-0.1087	0.6124	0.5597	0.0249	0.4703
ArgillaPerc	0.3385	-0.8520	-0.2191	-0.0727	-0.1274
PhidTd	-0.1605	0.7413	-0.1444	0.0150	-0.2178
CdKpaTd	0.2482	-0.3147	-0.1864	0.5211	-0.0576

Tabella 1
l'indice plastico. Gli ultimi due parametri sono ben correlati tra di loro (correlazione 0.70) e mediamente correlati con il primo, con correlazioni rispettivamente 0.48 e 0.63 . Questo fattore è ben correlato con l'angolo d'attrito drenato (correlazione 0.74).

Il Fattore 3, che spiega il 14.14 \% della variabilità totale, non sembra dominato da particolari grandezze fisiche e risulta mediamente correlato con il contenuto di sabbia e il peso della parte solida, in contrapposizione con il contenuto in limo, indice di attività colloidale e il limite liquido. Il fattore è scarsamente correlato sia con l'angolo d'attrito drenato sia con la coesione drenata.

I Fattori 4 e 5, che spiegano il 9.90 \% e il 7.70 \% della variabilità totale, sono ben correlati rispettivamente al limite plastico e al contenuto di ghiaia. Il pri-
mo risulta mediamente correlato alla coesione drenata (correlazione 0.52), mentre il secondo è debolmente correlato con l'angolo d'attrito drenato (correlazione 0.22).

La proiezione delle variabili attive e supplementari nel piano dei primi due fattori è mostrata nella Figura 7. Si osservi, dalla posizione del punto in Figura 7, che l'angolo d'attrito drenato è fortemente correlato con il Fattore 2, mentre la coesione drenata è debolmente correlata con il Fattore 1 (0.25) e il Fattore $2(-0.31)$

In conclusione, dall'ACP si deduce che mentre l'angolo d'attrito drenato è fortemente condizionato dai Fattori 2 e 5, per conto del contenuto di argilla e di ghiaia agenti in maniera inversa, la coesione drenata è mediamente influenzata dai Fattori 1, 2, 3 e 4, per conto di tutti
i parametri, ad eccezione di peso per unità di volume, indice dei vuoti e contenuto di sabbia.

Da questa analisi appare chiaro che la ricostruzione spaziale delle caratteristiche meccaniche può trarre vantaggio dalla conoscenza dei parametri fisici (considerati come variabili ausiliarie), in maggior misura per l'angolo d'attrito drenato e meno per la coesione drenata. I metodi per effettuare questo tipo di stima sono la tradizionale regressione lj neare multipla e, più efficacemente, il cokriging. La regressione lineare multipla consiste nell'interpolare un iper-piano dei minimi quadrati tra la variabile di interesse e tutte le altre e, quindi, di dedurre, a partire dal piano interpolato, i valori della variabile di interesse nei punti in cui non sono noti. Il metodo non tiene però conto delle correlazioni spaziali,

Per una più facile operatività, nel cokriging le variabili ausiliarie sono state coinvolte non direttamente, ma attraverso i primi 5 fattori dell'ACP.

Ancora, per mettere in evidenza l'apporto delle variabili ausiliarie, le stime sono state effettuate anche con il kriging che, come è noto, tiene conto della correlazione spaziale della sola variabile di interesse.

I risultati della cross-validazione, sia attraverso l'istogramma degli errori sia attraverso gli scatterplot tra misure e stime, sono mostrati rispettivamente nelle figure 8 e 9 .

In aggiunta, nella Tabella 2 sono riportate le statistiche della cross-validazione consistenti in: deviazione standard degli errori di cross-validazione, correlazione misure/stime, pendenza della retta di regressione misure/stime. considerate invece dal cokriging. Questo stimatore, infatti, sfrutta le correlazioni spaziali tra la variabile di interesse e le variabili ausiliarie per confezionare lo stimatore lineare più efficace tra quelli corretti.

Al fine di evidenziare le prestazioni dei due stimatori, sono stati stimati con entrambi i metodi i 55 valori dell'angolo d'attrito drenato nei punti di prelievo dei rispettivi campioni e quindi i valori ottenuti sono stati confrontati con i valori misurati. Questa operazione è di solito nota come crossvalidazione.

Figura 7 - Analisi in Componenti Principali: cerchio di correlazione.

Figura 8. Istogrammi degli errori di cross-validazione.

Dall'esame dei risultati si evince che con l'apporto delle variabili ausiliarie, anche non tenendo conto delle correlazioni spaziali (regressione multipla), si ottengono risultati più validi che non con l'apporto dell'elemento spaziale limitato alla sola variabile di interesse (kriging). Mentre il cokriging, che considera entrambi gli aspetti, fornisce i risultati migliori.

Per effettuare il cokriging nelle modalità sopra esposte, che coinvolge tutti i parametri fisici nella stima attraverso i
primi 5 fattori, sono sfruttabili solo 125 dei 950 campioni disponibili. Coinvolgendo invece tutte le variabili si sfrutta la totalità dell'informazione disponibile. Bisogna però aggiustare un modello di correlazione con 14 variabili contro le 6, una di interesse e 5 ausiliarie, del cokriging sperimentato. La difficoltà operativa è però compensata dalla maggiore quantità di informazione utilizzata. Una soluzione intermedia potrebbe essere quella di considerare come variabili ausiliarie solo le quattro frazioni granulometriche. I campioni utilizzabili sarebbero in questo caso 863 (il 10% in meno) e le variabili in gioco nel cokriging sarebbero appena 5. In questo caso occorrerà valutare la diminuzione di accuratezza che, in base a quanto detto, non dovrebbe interessare l'angolo di attrito drenato, ma solo la coesione drenata.

A conclusione dell'analisi spaziale dei parametri fisico-meccanici, i risultati saranno utilizzati per la caratterizzazione dei volumi omogenei dal punto di vista li-tologico-tessiturale e per la definizione delle unità litotecniche delle alluvioni recenti (AR) e, in una fase successiva, delle altre unità stratigrafiche.

Conclusioni

È stato realizzato un modello geologico dei terreni della città di Roma ed è in corso di realizzazione la modellazione geotecnica. Il primo passo del progetto è stato la creazione di un sistema informativo geografico contenente la banca dati geologico-geotecnica nella quale sono archiviate le informazioni stratigrafiche del sottosuolo e i dati litologici, geotecnici e idrogeologici. Al momento sono presenti 8004 sondaggi, con oltre 35000 record relativi alla stratigrafia e circa

12000 riferiti alle informazioni di tipo geotecnico.

Per realizzare il modello geologico sono stati selezionati dalla banca dati oltre 2000 sondaggi geognostici e sezioni stratigrafiche di campagna. I dati di superficie e di sottosuolo sono stati interpretati e correlati. Oltre 90 pannelli di correlazione sono stati realizzati utilizzando un nuovo schema litostratigrafico in cui sono definite le unità stratigrafiche informali.

L'elaborazione del modello geologico è stata preliminare all'avvio della creazione del modello geotecnico. La modellazione geotecnica è stata avviata per tutte le unità stratigrafiche attraverso il riconoscimento di corpi omogenei per caratteri fisici e geomeccanici.

Questioni di opportunità relative ai fattori di rischio geologico, tuttavia, hanno indirizzato l'attenzione verso l'Unità AR all'interno del GRA. Le informazioni estratte dalla banca dati, codificate in base alla classificazione litologicotessiturale, sono state analizzate con metodologie geostatistiche per ricostruire la variabilità spaziale dei caratteri litologici. Parallelamente è stata avviata l'analisi geostatistica dei parametri geomeccanici che ha permesso di valutare il cokriging come migliore metodo di stima dei parametri stessi in aree prive di informazione.

STATISTICHE	STIMATORE		
	Regressione multipla	Kriging	Cokriging Variabili aus: fattori ACP
Deviazione standard errori stima	3.51	3.71	2.53
Correlazione stime/misure	0.64	0.55	0.82
Pendenza retta regressione stime/misure	0.72	0.79	0.88

A conclusione dell'analisi spaziale dei parametri fisicomeccanici, i risultati saranno utilizzati per la caratterizzazione dei corpi geologici e per la definizione delle unità litotecniche delle alluvioni recenti (AR) e, in una fase successiva, delle altre unità stratigrafiche.
Tabella 2

Figura 9. Scatterplot misure/stime.

Riferimenti bibliografici

AMBROSETTI P., BONADONNA F.P.(1966) - Revisione dei dati sul Plio-Pleistocene di Roma. - Atti Accad. Gioenia di Sci. Nat., 18, 33-72.
BELLOTTI P., CHIOCCI F.L., MILLI S., TORTORA P., VALERI P. (1994) - Sequence stratigraphy and depositional setting of the Tiber delta: integration of high-resolution seismics, well logs and archeological data. Jour. Sed. Res., 64, 416-432.
BELLOTTI P., MILLI S., TORTORA P., VALERI P. (1995) - Physical stratigraphy and sedimentology of the Late Pleistocene-Holocene Tiber delta depositional sequence. Sedimentology, 42, 617-634.
BONADONNA F.P. (1968) - Studi sul Pleistocene del Lazio V. La biostratigrafia di Monte Mario e la "fauna malacologica mariana" di Cerulli Irelli. Mem. Soc. Geol. It., 7, 261-321.
CONATO V., ESU D., MALATESTA A., ZARLENGA F. (1980) - New data on the Pleistocene of Rome. Quaternaria, 22, 131-176.
DATE C. J. (1995) - An introduction to database systems, 6th Ed. Wiley \& Sons, Readings, 840 pp .
FUNICIELLO R. (1995) - "La geologia di Roma.

Il centro storico di Roma". Memorie descrittive della Carta Geologica d'Italia, Volume 50, 550 pp .
MARRA F, ROSA C. (1995) - Stratigrafia e assetto geologico dell'area romana. In R. Funiciello (Ed.) 1995, "La geologia di Roma. Il centro storico di Roma". Memorie descrittive della Carta Geologica d'Italia, 50, 49-118.
MILLI S. (1997) - Depositional settings and hi-gh-frequency sequence stratigraphy of the middle-upper pleistocene to Holocene deposits of the Roman basin. - Geologica Romana, 33, 99-136.
VENTRIGLIA U. (2002) - Geologia del territorio del Comune di Roma. Amministrazione Provinciale di Roma, Roma. Volume e tavole fuori testo.

Ringraziamenti

Gli Autori ringraziano la Sig.ra Luciana Angeloni e la Sig.ra Donatella Lori per il supporto amministrativo, il Sig. Marco Albano per il supporto cartografico, la Sig.ra Silvia Severi per quello tecnico. Si ringraziano, inoltre, I'APAT, il Comune di Roma, MetroRoma, Geoplanning, S.G.S. Studio Geotecnico Strutturale, S.I.G. Studio Indagini Geotecniche, IGES s.n.c., per i dati forniti.

Schema idrogeologico della città di Roma

Gestione della risorsa idrica e del rischio geologico

Giuseppe Capelli, Roberto Mazza

Gli autori stanno conducendo da anni studi idrogeologici quantitativi finalizzati alla definizione degli strumenti necessari alla redazione dei piani stralcio relativi agli acquiferi vulcanici del territorio della Regione Lazio. Questi studi riguardano anche il territorio romano e del Delta del Fiume Tevere. Inoltre, in relazione a progetti di ricerca e a studi applicati a problematiche di rischio nei vari comprensori del Comune di Roma, sono state condotte valutazioni di rischio e proposte norme di gestione delle risorse geologiche in base ad analisi effettuate con grande dettaglio di scala.

Il contributo riportato in questa nota riprende complessivamente i risultati degli studi sopradescritti, fornendo, oltre a un quadro generale sullo stato di conservazione delle risorse idriche nel territorio romano, anche delle mirate applicazioni dell'analisi idrogeologica a specifiche necessità della geologia urbana (Capelli \& Mazza, in stampa).

Dagli studi effettuati, impostati su metodologie innovative, sono derivate analisi di bilancio idrogeologico distribuito che hanno consentito di definire aree critiche e di attenzione (Capelli et alii, 2005). Si tratta di un importante ricerca di base a scala regionale da cui deriva una dettagliata lettura dell'idrogeologia del territorio del Comune di Roma. Lo studio, attraverso il rilevamento di numerose centinaia di punti d'acqua (pozzi, misure di portata in alveo e sorgenti), ha consentito di definire a

Giuseppe Capelli, Professore 2° fascia GEO/05 presso il Dipartimento di Scienze Geologiche dell'Università degli Studi "Roma Tre"
Roberto Mazza, Ricercatore GEO/05 presso il Dipartimento di Scienze Geologiche dell'Università degli Studi "Roma Tre"
scala di dettaglio l'andamento delle linee isopiezometriche relative allo stato di saturazione degli acquiferi appartenenti alle seguenti unità idrogeologiche: Unità Albana, Unità Sabatina, Unità di Ponte Galeria, Unità del Delta del Fiume Tevere e Unità dei depositi alluvionali recenti e attuali (Fig. 1) (Capelli et alii, 2001).

La definizione di una cartografia idrogeologica aggiornata (Fig. 2), che ha utilizzato anche i recenti rilevamenti condotti per il Progetto CARG (Funiciello \& Giordano, 2005), ha reso possibile la valutazione degli interscambi esistenti tra la circolazione sotterranea definita al tet-
to delle falde principali ed il reticolo idrografico, sia naturale che artificiale, costituito prevalentemente dalla rete dei collettori fognari. Quest'ultimo ricalca, sostituendolo o affiancandolo, il sistema di aste fluviali minori che oggi risulta fortemente ridotto all'interno del tessuto urbano della città.

Nel settore occidentale del territorio, in riva destra del F. Tevere, si può osservare come l'alto strutturale di Monte Mario, orientato da NW a $S E$, condiziona l'andamento delle linee di flusso delle acque sotterranee (Fig. 2). Esso, alle quote di interesse per la circolazione ipogea,

Figura 1 - Carta delle Unità Idrogeologiche del territorio romano.
é costituito da terreni argilloso-sabbiosi e marnosi aventi una permeabilità molto bassa. L'acquifero sabatino nel suo naturale drenaggio verso sud, trovandosi ostacolato dalla struttura di Monte Mario, si indirizza verso il Torrente Arrone e i bacini del Fosso di Acquatraversa, Cremera e Valchetta. La ricarica dei Fossi Galeria,

Magliana e minori é invece essenzialmente dovuta agli acquiferi ghiaiososabbiosi prevulcanici.

Ben diversa é la situazione in riva sinistra del F. Tevere, dove la potente falda albana é meno influenzata dal substrato argilloso più ribassato di quota; essa alimenta copiosamente tutte le incisioni

Figura 2 - Carta delle linee isopiezometriche della Città di Roma.
fluviali che hanno raggiunto il tetto della falda regionale (Fig. 3). Sempre su questo versante, all'interno della città, i terreni a bassa permeabilità plio-pleistocenici, presentano quote di qualche metro superiori al livello del mare. La geometria del tetto delle formazioni prevulcaniche divide le direttrici di drenaggio della circolazione di superficie e sotterranea, indirizzando i deflussi di origine albana verso il Tevere o verso l'Aniene.

Più a sud I'alto strutturale di Pratica di Mare - Castel Porziano impedisce al settore sud occidentale dell'Unità Albana di alimentare il delta del Tevere, i cui acquiferi in riva sinistra sono essenzialmente ricaricati dal complesso
alluvionale del fiume stesso.
L'analisi è stata completata con la produzione di numerose carte tematiche (non riportate in questa nota) finalizzate alla definizione del bilancio relativamente alle unità idrogeologiche e alla definizione quantitativa della pressione antropica in termini di prelievo e tipologia di utilizzo (residenziale, agricolo e industriale) (Capelli et alii, 2005).

Nell'area romana, relativamente al settore di riva sinistra del Tevere, ricadono sia aree critiche che di attenzione (Fig. 4). Le prime riguardano i corpi idrici sotterranei in cui l'entità dei prelievi causa l'alterazone della circolazione idrica e dei livelli piezometrici con valori

Figura 3 - Profili idrogeologici del settore nord-orientale della Città di Roma (da Capelli et alii, 2005). Legenda: 1 - Coltri di terreno di riporto; 2 - Depositi alluvionali; 3 - Unità di Sacco Pastore; 4 - Unità Aurelia; 5 - Unità di Villa Senni; 6 - Tufo lionato; 7 - Unità delle Pozzolane nere; 8 - Successione di La Storta; 9 - Unità del Tufo rosso a scorie nere sabatino; 10 - Unità delle Pozzolane rosse; 11 - Successione di Sacrofano; 12 - Lave di Vallerano; 13-Unità di Casale Cavaliere; 14 - Unità del Palatino; 15 - Unità di Valle Giulia; 16-Unità della Via Tiberina; 17 - Unità di Tor de' Cenci; 18 - Unità di Santa Cecilia; 19 - Unità del Fosso della Crescenza; 20 - Substrato prevalentemente argilloso; 21 - Pozzo o perforazione intercettato da profilo; 22 - Pozzo o perforazione proiettato sul profilo; 23 - Livello piezometrico da Ventriglia, 1971; 24 - Livello piezometrico da Ventriglia 2002; 25 - Livello piezometrico.

Figura 4 - Carta delle aree critiche e di attenzione dell'Unità Idrogeologica Albana (da Capelli e Mazza, 2005).
significativamente superiori a quelli delle aree circostanti, determinando un'elevata probabilità di compromissione dell'approvvigionamento idrico per le popolazioni e le attività insistenti sull'area. Le aree di attenzione, invece, sono aree caratterizzate da significativi abbassamenti della falda e da concentrazione dei prelievi inferiore o uguale a $1.600 \mathrm{~m}^{3} / \mathrm{an}-$ no/ha, corrispondente al prelievo medio
dell'intera area dei Colli Albani.
Le indicazioni derivanti dai risultati dello studio mostrano che la risorsa idrica sotterranea nell'area romana è fortemente sfruttata e che quindi essa sostiene in vario modo l'articolato sistema urbano nel suo complesso, ovvero: attività industriali, artigianali, servizi; attività agricole; attività sportive; impianti di climatizzazione, ecc...

Figura 5 - Carta della distribuzione dei valori di temperatura delle acque sotterranee.

Parallelamente alle valutazioni di stato della criticità della risorsa, sono state condotte analisi sullo stato chimico-fisico delle acque sotterranee. Dalle campagne di rilevamento risulta in maniera evidente che le acque presentano classi di termalismo molto diverse (Fig. 5). Si individuano dei settori della città nei quali i valori sono nettamente al di sopra dei $22^{\circ} \mathrm{C}$ (Ciampino e Trigoria) e, in relazione a concomitanti fattori geochimici, tali elevati valori sono certamente da riferirsi alla risalita di fluidi endogeni a bassa en-
talpia. In altri settori i valori prossimi e/o superiori ai $18^{\circ} \mathrm{C}$ vengono correlati dagli autori all'inquinamento termico dovuto ad attività artigianali, industriali ed alla sempre più diffusa presenza di impianti di condizionamento che utilizzano acque sotterranee nei sistemi scaricando i reflui nel sistema acquifero.

Oltre agli studi di base come quello appena descritto, gli autori hanno affrontato studi idrogeologici applicati ad analisi di rischio per crollo causato dalla presenza di cavità oppure dalla presenza

Figura 6 - Carta delle linee isopiezometriche relative al territorio del VI Municipio del Comune di Roma.

Figura 7 - Profili geologici attraverso la Valle del Fosso di Grotta Perfetta.
di litoformazioni con scadente qualità geotecnica. Tali studi sono stati condotti ad elevatissimo dettaglio di scala. Tra i più significativi si menzionano quello riguardante il territorio del VI Municipio (Mazza et alii, 2001; 2004) e quello di Garbatella Ostiense (Giordano et alii, in stampa). Nel VI Municipio la quota della falda definisce le profondità fino alle qua-
li è possibile la presenza di una rete caveale (Fig. 6). Infatti, l'individuazione dei livelli di saturazione ricavati dal rilevamento piezometrico porta, insieme ad altri fattori, a ridurre il volume di territorio in cui è possibile la presenza di ampie cavità. Inoltre si è potuto constatare che anche nel sistema aerato, zone di percolazione e/o percolazione concentrata

Figura 8 - Carta delle linee isofreatiche del settore romano del Delta del Fiume Tevere.
(perdita dalle reti idriche) determinano condizioni di ammaloramento delle vulcaniti e più in particolare delle volte e dei pilastri delle cavità.

Nel settore Garbatetella Ostiense, lungo I'antico bacino di Grotta Perfetta, l'assetto idrogeologico condiziona fortemente il comportamento geomeccanico della serie fluviale recente, determinando dei cedimenti differenziali e duraturi delle opere di fondazione sia delle strutture residenziali (Fig. 7) che di alcune importanti reti di sottoservizi. Si è infatti constatato, attraverso analisi stratigrafiche, geotecniche, idrogeologiche e idrauliche, che il complesso delle argille organiche, caratterizzato da spessori di qualche decina di metri, presenta contenuti d'acqua superiori al 100% a seguito delle condizioni al contorno, ovvero una ri-
carica legata alla presenza di acquiferi distribuiti in modo da racchiudere completamente le argille torbose, impedendone la naturale compattazione per diminuzione del contenuto d'acqua (Fig. 7).

Più in generale, negli studi di analisi del rischio in ambiente urbano, è sempre importante la definizione dello schema idrogeologico, del potenziale idrico e delI'entità della ricarica degli acquiferi. In questo contesto vanno distinti i casi in cui le opere, antiche o moderne, sono dei soggetti a rischio (ipogei archeologici, linee metropolitane, gallerie di servizi) e quelli in cui è l'opera a determinare un aggravamento della situazione di pericolo (sbarramenti di flusso idrico, innalzamenti locali dei livelli piezometrici).

Nelle aree estrattive dei comprensori Galeria-Magliana (Capelli et alii, 1999) e

Figura 9 - Profilo schematico del cuneo salino e della batimetria lungo l'asse mediano del Canale della Fiumara Grande da Capo Due Rami alla foce (da Mikhailova M.V. et alii, 1999).

Ardeatino-Laurentino è stata effettuata un'analisi ambientale che ha contribuito a definire in maniera circostanziata l'assetto idrogeologico dell'area e l'impatto che l'attività estrattiva può avere sulle risorse idriche. In molti siti estrattivi, infatti, lo sfruttamento delle risorse lapidee
comporta escavazione per molti metri al di sotto del livello di saturazione e quindi asporto totale delle litoformazioni costituenti l'acquifero. A questo fatto spesso si accompagna la dequalificazione della risorsa stessa a seguito dell'eliminazione delle coltri di copertura che hanno

Figura 10 - Profilo schematico della batimetria e dei valori di conducibilità lungo l'asse mediano del Canale Collettore Primario di Ponente - Canale Bagnolo, fino all'impianto di sollevamento di Ostia Antica.
la funzione di proteggere le falde. In molti casi, il ritombamento di superfici considerevoli con materiali coesivi, ha determinato una sostanziale modifica delle linee di flusso idriche sotterranee.

Relativamente all'ambito costiero, nel settore romano del Delta del Tevere (Capelli et alii, 2002), lo studio idrogeologico ha messo in evidenza come la superficie piezometrica si mantenga estesamente al di sotto del livello marino (Fig. 8). Per di più in vaste aree la soggiacenza è compresa tra -1 e -5 metri. Tale
soggiacenza determina un richiamo di acque saline nell'entroterra non solo a partire dalle linee di riva, ma anche dai settori terminali del Tevere (Fig. 9) e del Canale dello Stagno, nei quali è presente un marcato cuneo salino di ingressione delle acque marine. A monte dell'impianto di sollevamento di Ostia Antica è stata riscontrata una marcata salinizzazione del Canale Primario di Ponente (Fig. 10) ed in altri appartenenti al Sistema delle Acque Basse.

Dall'esame della figura 11 risulta

Figura 11 - Carta della distribuzione dei valori di conducibilità elettrica delle acque sotterranee del settore romano del Delta del Fiume Tevere.
evidente l'estensione dei plume di penetrazione salina. L'aumento dei prelievi di acqua da pozzo e il potenziamento del sistema di bonifica in termini di portata e di sezione idraulica dei canali, può incrementare tale situazione e quindi determinare una totale salinizzazione degli acquiferi del delta.

Rimane sempre più evidente che l'analisi delle problematiche idrogeologiche è un elemento fondamentale negli studi di geologia in ambito urbano, in particolare per la realizzazione delle opere in sotterraneo e per la gestione delle problematiche urbanistiche e ambientali.

Riferimenti bibliografici

CAPELLI G. \& MAZZA R. (2005) - Water criticality in the Colli Albani (Rome, Italy). Giornale di Geologia Vol. 1, p. 263-273.
CAPELLI G. \& MAZZA R. (in stampa) - Caratteristiche idrogeologiche dell'area romana. Atti dei Convegni dei Lincei "Ecosistema Roma" (14-16 aprile 2004 - Roma). Accademia Nazionale dei Lincei, p. 301-310.
CAPELLI G., FUNICIELLO R., IORIO D. \& SALVATI R. (1999) - Loss of groundwater resources following major quarrying activity in urban areas: the Galeria Magliana quarry basin (Rome, Italy). Impacts of Urban Growth on Surface Water and Groundwater Quality (Proceedings of IUGG 99 Symposium HS5, Birmingham, July 1999). IAHS Pubbl. no. 259, pp. 169-175.
CAPELLI G., MAZZA R. \& GAZZETTI C. (a cura di) (2005) - Strumenti e strategie per la tutela e l'uso compatibile della risorsa idrica nel Lazio. Gli acquiferi vulcanici. Quaderni di Tecniche di Protezione Ambientale n. 78. Pitagora Editrice Bologna, pp. 216, 4 tavv. f.t., 21 tavv. f.t. su CD ROM allegato.

CAPELLI G., MAZZA R., DE FILIPPIS L., SALVATI R. \& CECILI A. (2001) - Studi di geologia ambientale: caratterizzazione idrogeologica delle aree protette di "RomaNatura".

Informatore Botanico Italiano - Boll. Soc. Bot. It. Vol 33, Suppl. 1, p. 29, 13 tavv. f.t. su CD-ROM allegato.
CAPELLI G., SALVATI R., MAZZA R. \& ZALAFFI M. (2002) - Caratteristiche idrogeologiche del Delta del Fiume Tevere e monitoraggio della falda superficiale nell'area di Castel Fusano. In: Il recupero ambientale della pineta di Castel Fusano- studi e monitoraggi, a cura di Blasi C., Cignini B., Dellisanti R.M., Montagna P. Palombi Editori, p. 9-13.
FUNICIELLO R. \& GIORDANO G. (a cura di) (2005) - Carta Geologica del Comune di Roma. Volume 1. Scala 1:10.000. APAT - Dipartimento Difesa del Suolo, Comune di Roma - Ufficio Protezione Civile, Università degli Studi "Roma Tre" - Dipartimento di Scienze Geologiche, pubblicazione su CDRom.
GIORDANO G., MAZZA R., CAPELLI G., FUNICIELLO R. \& PAROTTO M. (in stampa) Geological surveying in a metropolitan area: The southern suburbs of the of Rome. In: Dal metodo alla rappresentazione: Atlante geologico d'Italia 2004, a cura di Pasquaré G. \& Venturini C., p.113-122.
MAZZA R., PAGANELLI D., CAMPOLUNGHI P., CAPELLI G., LANZINI M., SERENI M. \& DE FILIPPIS L. (2001) - Rischio di crollo da cavità sotterranee nel settore orientale della città di Roma. Alti del III Forum Italiano di Scienze della Terra GEOITALIA 2001, Chieti, 5-8 settembre 2001 (extended abstract), pp. 414-416.
MAZZA R., ROSA C., CAPELLI G. \& SERENI M. (2004) - La geologia di Centocelle. In: Centocelle I. Roma S.D.O. Le indagine archeologiche, a cura di Gioia P. \& Volpe R. Rubettino editore, pp. 165-176.
MIKHAILOVA M.V., BELLOTTI P., VALERI P., TORTORA P. (1999) - Intrusion of sea water in to the river part of the Tiber mouth. Water Resources, 26 (6), pp. 679-686.
VENTRIGLIA U. (1971) - La Geologia della Città di Roma. Carta Idrogeologica. Amministrazione Provinciale di Roma. Roma.
VENTRIGLIA U. (2002) - Geologia del Territorio del Comune di Roma. Amministrazione Provinciale di Roma, Servizio Geologico, Difesa del Suolo. Roma.

Le cavità sotterranee: dissesti, censimenti e metodologie d'analisi

Angelo Corazza, Maurizio Lanzini, Francesco Leone

Premessa

L'area romana è frequentemente attraversata da gallerie prodotte da attività di coltivazione di pozzolane, di orizzonti tufacei e, subordinatamente, di ghiaie e sabbie; inoltre sono diffuse gallerie relative a cunicoli drenanti e catacombe, legati alla bimillenaria storia di Roma.

Altrettanto frequentemente si verificano voragini e frane in corrispondenza di dette
Angelo Corazza, Geologo, laureato in Scienze Geologiche nel 1984 presso I'Università "La Sapienza" di Roma. Ha svolto fino al 1998 attività libero professionale nei settori della geologia applicata, idrogeologia e geologia ambientale . Lavora dal 1998 presso il Dipartimento della protezione civile dove si occupa del rischio legato a movimenti gravitativi ed ha coordinato il censimento in Italia dei dissesti provocati da cavità sotterranee. Ha pubblicato numerosi studi nel campo della idrogeologia ambientale e della geologia e idrogeologia dell'area romana. Ha pubblicato inoltre lavori sull'idraulica antica a Roma. E' consigliere della SIGEA Lazio.
Maurizio Lanzini, Geologo, laureato in Scienze Geologiche nel 1977 presso I'Università "La Sapienza" di Roma. Libero professionista, opera nell'area romana in vari aspetti della geologia applicata (rischi geologici, dissesti del patrimonio edilizio, progettazione di infrastrutture, ecc.); nel corso degli anni ha svolto numerose indagini e studi sul rischio di crollo di cavità sotterranee (studi di stabilità, valutazione del rischio, rilevamenti speleologici e geomeccanici, progettazione di interventi di consolidamento, ecc.). Nell'ambito delle problematiche inerenti le cavità sotterranee ha organizzato, come Presidente della SIGEA Lazio ed in collaborazione con La Provincia di Roma, il Convegno "Le cavità sotterranee nell'area urbana di Roma e nella Provincia. Problemi di pericolosità e gestione", 1999, Roma.
Francesco Leone, Geologo, laureato in Scienze Geologiche nel 1996 presso I'Università "La Sapienza" di Roma. Ha svolto fino al 2003 attività libero professionale presso la Geoplanning S.r.l. Servizi per il territorio, nei settori della geologia tecnica, idrogeologia e geoarcheologia. Ha pubblicato numerosi studi aventi oggetto la geologia urbana e la climatologia, con particolare riferimento all'area romana. Giornalista pubblicista, dal 2002 collabora con il Corriere della Sera occupandosi di tematiche relative alla climatologia e ai rischi geologici. Lavora dal 2004 presso il Dipartimento della protezione civile dove si occupa del rischio legato a fenomeni franosi.
cavità, le quali determinano nel contempo una condizione di rischio per la cittadinanza e problemi legati alla interruzione delle strade e delle reti di sottoservizi (fognature, reti idriche, elettriche, telefoniche, etc.) nonché alla stabilità degli edifici sovrastanti.

Le aree interessate dalla presenza di tali cavità sono prevalentemente quella orientale, settentrionale e meridionale della città, ove si sviluppano i depositi piroclastici pozzolanacei del Vulcano Laziale, anche se non mancano segnalazioni, sia in destra che in sinistra idrografica, in corrispondenza delle vulcaniti del Vulcano Sabatino. Le cave relative a coltivazioni di depositi di ghiaie e sabbie, meno frequenti, sono invece riferibili alle Unità di Ponte Galeria o del Paleotevere, diffuse per esempio lungo la Via Magliana ed in alcuni settori nordoccidentali di Roma, lungo il versante destro della valle tiberina.

Nel tempo si è persa la memoria dell'esistenza e della precisa ubicazione di tali cavità e, soprattutto durante la intensa espansione edilizia degli anni Cin-quanta-Settanta, si è costruito un tessuto continuo di strutture urbane al di sopra di tali gallerie, non sempre con le opportune tipologie fondazionali; sovente infatti si riscontrano edifici costruiti con fondazioni dirette al di sopra di reti ipogee a piccola profondità ed in condizione di potenziale pericolo. Altre interazioni negative si realizzano fra le gallerie e le reti idriche e fognarie, spesso fatiscenti e con frequenti perdite di liquami.

Ad oggi la situazione è tale che frequentemente dissesti, voragini, cedimenti e lesioni ad edifici provocano danni economici e rischi per la popolazione residente.

I casi di dissesto dovuti a cavità sotterranee

I casi in Italia

In Italia i dissesti provocati da fenomeni di sprofondamento o dovuti alla presenza di cavità sotterranee sono frequenti ed hanno determinato spesso ingenti danni materiali e, in molti casi, anche la perdita di vite umane.

Le voragini provocate dal crollo delle cavità, scavate dall'uomo nel sottosuolo di aree originariamente poste ai margini dei perimetri urbani ma oggi completamente urbanizzate, hanno provocato infatti nel passato gravi danni sia ai beni che alle persone: ad esempio a Napoli, solo a partire dal 1971, sono noti in letteratura almeno 9 eventi con vittime (VALLARIO, 2001). I vuoti sotterranei sono stati realizzati principalmente per ricavare materiali da costruzione ma anche per realizzare cantine e depositi, strutture idrauliche, luoghi di culto o gallerie.

Negli ultimi anni si è assistito inoltre ad un aumento della frequenza dei casi di sprofondamento legati a cavità naturali, in particolare di quelli che nella letteratura scientifica italiana sono definiti "camini di collasso", che pur essendo caratterizzati da dimensioni areali notevoli non hanno provocato finora per fortuna vittime (AA.VV. 2002, 2004).

Nei casi più gravi, come quelli avvenuti nella città di Napoli (VALLARIO, 2001; PELLEGRINO, 2002) a Camaiore (LU) e a Grosseto (AA.VV. 2002, 2004), lo Stato è anche intervenuto direttamente, dichiarando lo stato di emergenza e finanziando, attraverso Ordinanze di protezione civile, gli interventi di sistemazione, a tutela anche dell'incolumità delle persone.

Nell'ambito delle attività di previsione e prevenzione e nel quadro delle competenze che per tali attività le leggi 225/92 e 401/2001 affidano al Dipartimento della protezione civile (DPC) e tenuto conto della diffusione dei fenomeni e dei danni da essi provocati, il DPC ha ravvisato la necessità di avviare studi approfonditi per definire il rischio collegato a tale tipo di fenomeni e a tal fine, ha predisposto nel 2001 uno specifico progetto denominato "Rischio Cavità" (CORAZZA et Alii, 2001; CORAZZA, 2004 a).

L'unico quadro conoscitivo disponibile a livello italiano al momento dell'avvio delle attività su questo tipo di fenomeni era quello desumibile dalla pubblicazione di Catenacci sui dissesti geologici e geoambientali che hanno colpito l'Italia dal dopoguerra al 1990 (CATENACCI, 1992).

Il Progetto, realizzato tra il 2001 e il 2003, ha avuto quindi come obiettivo quello di ricostruire un quadro conoscitivo rappresentativo a livello nazionale sul rischio in questione. A tal fine è stato realizzato un censimento dei dissesti provocati dalle cavità sotterranee.

Per l'acquisizione delle informazioni, svolta con la collaborazione di Autorità di bacino, Regioni, Province e Comuni, è stata redatta una apposita scheda censuaria (CORAZZA, 2004 b).

La scheda utilizzata per il censimento caratterizza il caso di dissesto per molteplici aspetti: la fonte dei dati, la documentazione tecnica e fotografica disponibile, la datazione, il tipo e morfologia del dissesto, la sua origine, gli insediamenti ed attività antropiche ricadenti nell'area d'interesse, lo stato delle conoscenze, i caratteri geologico-strutturali e idrogeologici, le caratteristiche e la stabilità delle grotte o delle cavità antropi-
che, i fenomeni precursori, l'evoluzione e i fattori predisponesti il dissesto, le persone e le cose danneggiate e/o a rischio, gli enti e gli organismi intervenuti a seguito del dissesto, gli interventi di sistemazione e di risanamento e i relativi costi, l'eventuale monitoraggio post-intervento, i provvedimenti amministrativi di riduzione del rischio, i piani o programmi di intervento in cui eventualmente il dissesto è stato inserito, una descrizione sintetica (abstract) di tutte le informazioni contenute nella scheda.

La necessità di elaborare una apposita scheda è nata anche dalla consapevolezza che i dissesti provocati da cavità sotterranee, pur avendo un grado notevole di pericolosità, erano poco studiati e conosciuti e laddove individuati venivano ricondotti all'interno di censimenti di fenomeni franosi (fenomeni dai quali i sinkholes andrebbero distinti), che comunque poco si adattano a descrivere nel dettaglio gli aspetti specifici dei dissesti in questione.

Il censimento ha permesso di raccogliere informazioni su 1009 casi di dissesto che sono disponibili sul sito www.sinkholes.it.

Nella figura 1 è riportata l'ubicazione dei casi di dissesto censiti, distinti in base all'origine, antropica o naturale, della cavità che li ha generati. In alcune aree, quali ad esempio le città di Napoli e di Roma, la scala della figura e il conseguente addensamento e sovrapposizione dei punti non permettono una valutazione realistica del numero di casi.

Dall'esame in particolare della tabella 1 si evidenzia come i fenomeni (794 casi) dovuti a cavità di origine antropica (cave sotterranee, cantine/depositi, cunicoli idraulici, miniere, cisterne, catacombe,

Le cavità sotterranee: dissesti, censimenti e metodologie d'analisi

REGIONE	Cavità Antropiche	Cavità Naturali	Totale
Piemonte	16	5	21
Valle d'Aosta	1	-	1
Lombardia	34	19	53
Veneto	6	12	18
Friuli Venezia Giulia	3	29	32
Trentino Alto Adige	9	-	9
Emilia Romagna	25	6	31
Liguria	4	2	6
Toscana	27	7	34
Umbria	16	2	18
Lazio	130	31	161
Marche	92	6	98
Abruzzo	60	16	76
Molise	10	2	12
Campania	194	1	195
Puglia	58	34	92
Basilicata	56	3	59
Calabria	11	9	20
Sicilia	15	19	34
Sardegna	27	12	39
	794	$\mathbf{2 1 5}$	1009
TOTALE	19		

Tabella 1 - Quadro dei dissesti censiti in Italia.
gallerie) siano nettamente prevalenti rispetto a quelli (215 casi) dovuti a cavità di origine naturale (dissoluzione di rocce solubili superficiali, piping nei terreni di copertura, crolli di cavità nel substrato roccioso con risentimento nei terreni di copertura, instabilità o crolli di grotte carsiche, laviche o in falesia, dissoluzione di intercalazioni solubili nel terreni di copertura del substrato roccioso). Le regioni maggiormente interessate sono la Campania (195 casi) e il Lazio (161 casi) ed in particolare le città di Napoli, con 146 casi, e di Roma, con 96 casi (Fig. 2). In queste due realtà, data la notevole presenza di reti caveali scavate dall'uomo (la cui esistenza è stata spesso dimenticata a seguito della urbanizzazione disordinata della seconda metà del secolo scorso)
e data l'elevata concentrazione di elementi vulnerabili, il livello del rischio è molto elevato tanto che gli eventi che si sono verificati hanno portato anche alla morte di numerose persone.

Per il rischio legato alle cavità di origine antropica, in considerazione delle oggettive difficoltà che si incontrano nelle aree urbane per addivenire ad una corretta analisi della pericolosità, esiste l'esigenza di definire criteri tecnicoscientifici per l'individuazione delle cavità, per l'analisi della loro pericolosità e per la definizione degli interventi più efficaci da realizzare sia in fase di emergenza che in fase di prevenzione a medio e lungo termine.

Fig. 1 - Localizzazione dei casi di dissesto censiti in Italia.

Figura 2 - Localizzazione dei casi di dissesto censiti nella città di Roma.

I casi a Roma

I casi di dissesto avvenuti a Roma tra il 1915 e il 2002 sono 96 (Fig. 2).

In 14 casi il dissesto è avvenuto in sotterraneo senza ripercussioni in superficie. Si tratta di crolli o lesioni nelle volte o nei pilastri delle cavità che hanno provocato la rottura di reti idriche o fognarie, danni a strutture in sotterranee (gallerie etc.), pericoli per la fruibilità degli ambienti ipogei (catacombe etc.).

In 82 casi il dissesto provocato dall'instabilità delle cavità sotterranee si è manifestato invece in superficie con la formazione di voragini (Fig. 3) di forma generalmente circolare o ellittica che hanno raggiunto anche grandi dimensioni (fino a 700 metri quadrati di estensione) e profondità (13 me tri dal piano campagna).

I dissesti, localizzati quasi sempre all'interno di aree a forte urbanizzazione, sono dovuti all'instabilità di cavità di origine antropica, costituite nella stragrande maggioranza dei casi da cave in sotterraneo (90\%) e molto in subordine da catacombe o da cunicoli idraulici.

In 90 casi le cavità origine del dissesto risultano scavate nei terreni piroclastici tipici della campagna romana; nei restanti 6 casi erano invece ricavate in terreni sab-bioso-ghiaiosi di età pleistocenica o olocenica.

I dissesti, oltre a produrre danni materiali hanno interessato, per fortuna non frequentemente, anche l'incolumità delle persone. Si registrano infatti quattro casi con morti, il più antico dei quali è avvenuto il 14 ottobre del 1928 quando un movimento franoso interessò il versante meridionale del rilievo di Monteverde dove erano presenti numerose cavità sotterranee che collassarono provocando ingenti danni agli edifici sovrastanti, uno dei quali, in via dell'Ongaro, crollò seppellendo tra le macerie
un'anziana donna (PIPERNO, 1929; CORAZZA et Alii, 2002).

Nel 1937 poi, in via Ceccano (Municipio VII) in un'area urbana, il crollo di una cava sotterranea di pozzolana collegata ad una rete caveale caratterizzata da una altezza di circa 3-4 m, e da una profondità minima dal piano campagna della calotta di 4-6 m.,

Figura 3 - Esempio di sprofondamento della sede stradale a causa della presenza di cavità sotterranee nei pressi di via Casilina a Roma. creò una voragine, avente un'area di circa $60-70 \mathrm{mq}$, di forma circolare ed una profondità di circa 8 m . La voragine provocò il crollo di un edificio e la morte di quattro persone.

Il caso è stato censito sulla base degli studi condotti dall'Ing. E. Cerlesi sull'area di Centocelle, che contengono una ricostruzione storica dei dissesti, basata su ricerche bibliografiche e interviste con i residenti. (CERLESI, 1990)

Gli altri due casi con vittime sono connessi a dissesti in sotterraneo avvenuti in cavità usate come fungaie e situate in zone non urbanizzate del territorio dell'attuale Municipio XI. Il primo caso è avvenuto l'8 settembre 1994 in via Appia Pignatelli e il secondo 7 Luglio 1997, in via dell'Almone. In tutti e due le situazioni il crollo della volta gallerie scavate in depositi pozzolanacei e utilizzate per la coltivazione di funghi (Fig. 4) provocò la morte di un operaio dell'azienda che gestiva la fungaia. L'evento determinò inoltre la chiusura delle aziende con ordjnanza sindacale.

Vanno segnalati anche due casi dove fortunatamente si ebbero solo feriti:

- quello, ancora in Via Ceccano - Palazzina Panci, nel 1944, dove una voragine prodottasi nel giardino privato della palazzina provocò un ferito. La voragine, avente un'area di circa $15-20 \mathrm{mq}$, di forma circolare ed una profondità di circa 12-14 m si verificò in corrispondenza di un pozzo di accesso ad una rete caveale che era stato riempito negli anni 40 quando gli ipogei erano utilizzati come rifugio antiaereo.
- quello avvenuto il 7 giugno 1958, in località Vigna Clara nel Comune di Roma (Municipio XX) in area urbana dove una voragine, dovuta al crollo di un ipogeo antropico scavato all'interno di depositi sabbiosi e ghiaiosi, provocò due feriti.

In altri sette casi i dissesti hanno portato all'emanazione di ordinanze di sgombero precauzionali con circa 200 persone evacuate complessivamente.

Dall'esame della tabella 2 si può notare come i dissesti interessino quasi tutta la città e come solo i Municipi 13, 14, 17,18 e 19 ne siano esenti.

Le aree interessate dalla presenza di tali cavità sono prevalentemente quella
orientale ove si sviluppano i depositi piroclastici pozzolanacei del Vulcano Laziale (Fig. 5).

La mappatura del rischio dovuto alla presenza delle cavità

La prima trattazione sistematica delle cavità sotterranee è reperibile in Ventriglia (1971, 2002), dove è allegata la Carta delle Cavità sotterranee che è la prima rappresentazione cartografica dell'ubicazione di ipogei nella Città di Roma.

Fra gli studi relativi alla valutazione di stabilità di reti caveali particolarmente significativo è il lavoro di Bernabini et Alii (1966) che nell'ambito di uno studio su una estesa rete caveale nell'area delle

Tre Fontane presenta un modello di valutazione del rischio di crollo, individuando, in base ad elementi morfologici e di rilevamento delle lesioni dei pilastri, 5 classi di stabilità dei pilastri stessi.

Negli anni '80-90 si realizzano ulteriori studi di carattere geologico, geotecnico e di valutazione del rischio di crollo di ipogei: Sciotti (1982, 1984a, 1984b), Lembo Fazio et Alii (1990), Crescenzi et Alii (1995), Lanzini (1995).

Ulteriori documentazioni si possono reperire negli Atti del Convegno "Le cavità sotterranee nell'area urbana di Roma e nella Provincia. Problemi di pericolosità e gestione", organizzato dalla SIGEA Lazio e dalla Provincia di Roma, nel corso del quale si sono affrontati gli aspetti geologici, litostratigrafici,

Figura 4 - Antica cava utilizzata per l'estrazione di pozzolana, attualmente adibita a fungaia.

Municipio	Casi di dissesto n.	
I	8	8,3
II	6	6,3
III	2	2,1
IV	1	1,0
V	5	5,2
VI	21	21,9
VII	14	14,6
VIII	1	1,0
IX	18	18,8
X	4	4,2
XI	5	5,2
XII	1	1,0
XV	2	2,1
XVI	3	3,1
XX	2	2,1
I e II	1	1,0
n.d.	2	2,1
Totale	96	100

Tabella 2 - Numero di dissesti censiti a Roma, divisi per Municipio.
di rilevamento, di valutazione del rischio di crollo, con numerose relazioni di vari autori (AA.VV., 1999).

In relazione alle problematiche di valutazione del rischio particolarmente significativo è lo studio eseguito sull'intero territorio del VI Municipio eseguito dal Dipartimento di Scienze Geologiche di Roma 3 (MAZZA et Alii, 2001). Lo studio è basato sull' analisi dei caratteri geologici, idrogeologici e geotecnici in un esteso settore orientale della Città di Roma, particolarmente soggetto a crolli e voragini. In particolare, in questo lavoro si propone un modello di valutazione del rischio che correla gli aspetti geologici, geotecnici e geometrici delle cavità con gli aspetti insediativi rappresentati dalle reti di sottoservizi o dalle varie tipologie fondali degli edifici (Figg. 3, 4 e 5).

Una recente sintesi delle problemati-

Figura 5 - Rappresentazione su Ortofotocarta delle situazioni di dissesto presenti nella zona di Centocelle a Roma.
che generali di rischio di crollo di ipogei si può inoltre rintracciare nello Studio "Rischio Cavità Sotterranee nell'area del Comune di Roma" commissionato dall'Amministrazione del Comune di Roma al Dip. Idraulica e Strade (Responsabile Scientifico Prof. M. Sciotti, 2001), in tale studio, che per la prima volta interessa l'intero territorio comunale, sono presentate mappe di reti caveali, sia di cava che catacombali, corredate da note illustrative e si è redatta una carta della pericolosità di crollo su basi geologiche e geotecniche.

Le modalità di studio e di intervento

A seguito del numero sempre crescente di dissesti dovuti a cavità sotterranee che negli ultimi decenni si sono
verificati in Italia, soprattutto nelle grandi aree urbane di Napoli e Roma, sono state sviluppate numerose tecniche, dirette e/o indirette, mirate all'individuazione dei vuoti nel sottosuolo.

Spesso la scelta migliore può risultare l'integrazioni di più metodologie, molteplici infatti sono le incognite legate a fattori quali la profondità, la litologia o il grado di saturazione dei terreni. Non sono da trascurare inoltre, nelle zone densamente urbanizzate, le interferenze provocate dalla presenza delle reti di sottoservizi.

Indagini

Le metodologie di studio ed individuazione di cavità sotterranee si possono dividere fra metodi indiretti e diretti:

Metodi indiretti (Geofisici)

* geoelettrici
* georadar
* microgravimetrici

Metodi diretti

* sondaggi meccanici
* rilievi speleologici
* rilievi topografici
* indagini televisive in foro

I metodi indiretti (geofisici) sono basati sulla misura di una proprietà specifica dei vuoti, che si presentano come oggetti a bassa o nulla densità, rigidità nulla ed alta resistività elettrica.

I problemi principali dell'utilizzo di metodologie geofisiche in zone ad alta urbanizzazione possono essere legate a barriere fisiche che impediscono l'uso di configurazioni geometriche standardizzate e/o a rumori di fondo di varia natura (vibrazionali, elettrici, correnti vaganti, ecc) che diminuiscono la sensibilità delle varie strumentazioni.

I metodi indiretti (geofisici) non permettono ovviamente nessuna valutazione circa lo stato fisico di stabilità delle calotte e dei pilastri, ma hanno però il vantaggio di essere non distruttivi.

I metodi diretti (rilevamenti topografici e speleologici) sono invece condizionati dalla effettiva possibilità di esplorazione in relazione alla presenza o meno di accessi alla rete caveale ed alle condizioni di sicurezza per i tecnici; un metodo diretto che supera questi problemi può essere l'indagine televisiva in foro.

Metodi indiretti (geofisici)

Prospezioni elettriche

Le prospezioni geolettriche, a corrente continua, si basano sulla misura della resistività dei terreni secondo varie configurazioni elettrodiche standardizzate: un vuoto sotterraneo è individuato da un aumento dei valori di resistività.

La configurazione usualmente più utilizzata di Schlumberger, che richiede un aumento via via maggiore della distanza fra gli elettrodi di corrente, ha realistiche difficoltà di essere adottata in area urbana per gli evidenti problemi legati a barriere fisiche (muri, edifici, ecc, ${ }_{\text {}}$); per tali motivi sono da preferire metodologie che richiedono configurazioni meno estese e più focalizzate tipo dipolo-dipolo.

Ma il problema maggiore per le metodologie geoelettriche in aree urbane risiede nella presenza di diffuse correnti vaganti e strutture metalliche sepolte (tubazioni e reti) che determinano deformazioni delle curve di resistività apparente (per tale motivo l'interpretazione dei sondaggi elettrici in area urbana va fatto con estrema cautela).

Si può concludere che indagini elettriche nell'area romana sono di problematica
utilizzazione e d'altra parte le indagini finora eseguite nelle indagini passate, peraltro non frequenti, sono di dubbio risultato riguardo alla individuazione certa di cavità sotterranee; la loro utilizzazione va infatti decisa in situazioni di bassi livelli di urbanizzazione, di gallerie prevedibilmente molto superficiali e sulla base della conoscenza litostratigrafica locale.

Prospezioni elettromagnetiche (Gpr-Georadar)

Il metodo è in grado di rilevare la posizione di superfici di discontinuità tra mezzi con caratteristiche dielettriche differenti, misurando i tempi di ritardo tra un impulso elettromagnetico e l'eco riflessa dalla suddetta superficie di discontinuità.

La scelta della frequenza è molto importante in quanto questa determina la profondità di indagine.

Il metodo appare però influenzato dalla eventuale bassa resistività degli orizzonti superficiali che assorbono le onde elettromagnetiche emesse: tale problema può essere limitato utilizzando georadar che emettano impulsi di bassa frequenza ($40-100 \mathrm{Mhz}$).

Nella realtà romana la frequente presenza in superficie di riporti molto umidi, di coperture tufacee alterate ed argillificate e la presenza di strati di tufi pedogenizzati all'interno della successione piroclastica, determina condizioni non favorevoli che non permettono, anche con georadar a bassa frequenza, di raggiungere profondità di investigazione oltre i 3-5 metri.

Per tali motivi, vista la presenza di gallerie sotterranee fino a 15-20 metri, il georadar non appare idoneo o quanto meno ha finora dato risultati contrastanti (a tale riguardo potrebbero aversi risultati positivi in situazioni particolari su
terreni asciutti e con medio-alte resistività, raccomandando comunque che le indagini siano eseguite da operatori di provata esperienza).

Prospezioni microgravimetiche

Il metodo gravimetrico è basato sulla misura di contrasto fra la densità dell'ammasso roccioso e l'assenza di densità del vuoto; infatti un vuoto sotterraneo è individuato da un minimo delle anomalie di Bouguer la cui estensione è proporzionale alle dimensioni areali ed alla profondità dei vuoti.

Questo metodo geofisico risulta preferibile rispetto alle altre metodologie geofisiche (geoelettriche e georadar) perché i valori rilevati non risentono di disturbi indotti dalla presenza di tubature metalliche interrate o di correnti vaganti nel sottosuolo.

Tale metodo è stato utilizzato con successo nell'area di via Buie d'Istria con cavità poste a circa $5-7 \mathrm{~m}$ di profondità e con dimensioni di 2.5-3 m (TORO et Alii, 1999). Per i migliori risultati è necessario tarare il modello dei vuoti con la stratigrafia locale.

Prospezioni sismiche

I metodi sismici a riflessione si basano sullo studio della propagazione di onde elastiche nel terreno. Per la ricerca dei vuoti essi appaiono avere a priori buone possibilità di applicazione in quanto le cavità, siano esse vuote o piene di acqua, presentano caratteristiche elastiche nettamente diverse rispetto ai terreni circostanti.

Da un punto di vista teorico il metodo sismico, del tutto analogo come principio al georadar, appare molto promettente, ma anche in questo caso l'eterogeneità e le caratteristiche elastiche scadenti dei
materiali di superficie provocano un forte assorbimento delle più alte frequenze dell'onda e quindi impediscono di "vedere" acusticamente le cavità tranne che siano di notevoli dimensioni.

Anche i metodi a trasmissione tra fori (metodi cross-hole), che potrebbero individuare bene cavità presenti tra i sondaggi, sono di difficile applicazione a Roma in quanto la quasi totalità delle cavità romane sono fuori falda e quindi non é facile effettuare energizzazioni di sufficiente energia ad alta frequenza in un foro per la registrazione nell'altro foro, a meno che i fori non siano molto vicini (qualche metro).

Quindi, a meno di casi particolari, l'utilizzazione dei metodi sismici nel caso di Roma e con l'attuale tecnologia non è per ora generalmente consigliabile.

Metodi diretti

Sondaggi meccanici

Tale metodo consiste nella esecuzione di una maglia di sondaggi, usualmente a distruzione di nucleo per motivi economici, per individuare la presenza o meno di vuoti sotterranei; tale metodo permette di individuare la profondità dal piano campagna della calotta e del letto del vuoto e pertanto l'altezza del vuoto stesso.

Se per una singola galleria o cunicolo ciò appare ancora accettabile (ma dovrebbe essere prima verificato che esista una sola galleria o camera), in presenza di una rete di gallerie, come è il caso dell'area romana, tale metodologia appare insufficiente.

Infatti risulta alquanto problematica, sulla base di una maglia di fori i quali

Figura 6 - Esempio di rilievo speleologico e geomeccanico in un'area del quartiere Prenestino.
hanno individuato o meno dei vuoti, l'estrapolazione dei risultati fino alla costruzione di un attendibile andamento della rete di gallerie; inoltre in tal modo non si ottengono informazioni circa la larghezza delle cavità, lo stato fisico delle pareti degli ipogei e le evoluzioni tensionali in atto.

Esplorazioni speleologiche

Qualora la rete di gallerie sia percorribile con sufficiente sicurezza si può ricorrere ad esplorazioni speleologiche: con questo termine si fa specificatamente riferimento al fatto che i "tecnici" responsabili della esplorazione debbono essere esperti delle tecniche speleologiche soprattutto nelle cavità in aree urbane (speleologia urbana).

Oltre a tale esigenza l'indagine deve ottenere una mappa della rete di gallerie che nelle condizioni usuali (difficoltà di accedere con strumentazione topografica) deve essere eseguito con la misura della larghezza e della altezza delle gallerie e dell'orientamento rispetto al nord magnetico degli assi delle varie gallerie tramite bussola. Inoltre gli speleologi debbono essere in grado di valutare tutte le dinamiche geomorfiche in atto (distacchi, lesioni sui pilastri, fratture e litologie, ecc) per cui sono necessarie conoscenze geologiche e geomeccaniche (Fig. 6).

Gli accessi alla rete di gallerie potranno essere preesistenti oppure realizzati con pozzi di grosso diametro ($0.6-0.8 \mathrm{~m}$) attrezzati con strutture in grado di permettere la discesa degli speleologi.

Poiché le misure degli allineamenti delle gallerie sono misurate con la bussola, in aree estese di gallerie possono ingenerarsi errori planimetrici.

Il limite maggiore è determinato da situazioni di rischio, da muri e frane sot-
terranee e da presenza di liquami che impediscono il prosieguo della indagine.

Un innegabile vantaggio è la possibilità di associare all'indagine speleologica un rilevamento geomeccanico sullo stato fisico delle calotte e dei pilastri.

Rilevamento topografico

Sempre nel caso che sia possibile accedere alle gallerie (acceso naturale o appositamente realizzato) e sempre che queste siano percorribili senza inutili rischi e nel contempo sia possibile trasportare attrezzature topografiche, si può prevedere un rilevo topografico in sotterraneo.

Rispetto al rilevamento con bussola di cui sopra (rilievo speleologico) si ottiene ovviamente una maggiore precisione e dettaglio. La delimitazione dell'area ed il controllo della triangolazione è eseguita con un segnale elettromagnetico generata da una bobina posta in galleria che permette ad un operatore esterno di individuare la posizione della bobina stessa (in tale modo si realizza il collegamento fra la rete caveale e la realtà urbanistica di superficie).

Anche in questo metodo è possibile associare un rilevamento geomeccanico sullo stato fisico delle calotte e dei pilastri.

Il limite maggiore è determinato da situazioni di rischio, da muri e frane sotterranee e da presenza di liquami che impediscono il prosieguo della indagine.

Nell'ambito delle mappature di reti caveali va sottolineata la necessità di accurate correlazioni fra le planimetrie in sotterraneo e le geometrie delle infrastrutture di superficie.

Indagini televisive in foro

Il metodo ha il vantaggio di superare le difficoltà di accesso che possono limi-
tare le metodologie topografiche e speleologiche, pur permettendo un analisi "visiva" delle cavità sotterranee ed un rilevamento geomeccanico.

L'attrezzatura è costituita da una mi-cro-telecamera montata su una struttura tubolare in grado di scendere lungo il foro di sondaggio del diametro di circa $120-130 \mathrm{~cm}$; l'illuminazione è realizzata con lampada alogena.

L'immediata visione in sito su monitor delle immagini e la possibilità di registrazione su videocassetta, permette sia un efficace sviluppo delle indagini televisive in tempo reale che la possibilita di una loro più meditata visione diagnostica successiva.

L'indagine si sviluppa con una prima ispezione della camera ed una puntuale annotazione degli elementi interessanti e del Ioro orientamento rispetto al Nord Magnetico tramite bussola.

Successivamente dopo aver annotato tutti gli elementi geometrici necessari, si eseguono le registrazioni televisive, sia con panoramiche che con riprese fisse su elementi significativi. In campagna si esegue una mappa per ogni singola stazione, lasciando ad una fase successiva l'integrazione delle varie singole mappe e l'elaborazione della intera rete di gallerie.

In questa maniera le perforazioni a distruzione di nucleo, necessarie per le ispezioni televisive, non saranno più eseguite in gran numero e casualmente, ma la loro ubicazione sarà individuata sulla base dell'andamento delle gallerie via via individuate dalle indagini televisive, con notevole risparmio economico.

Un aspetto di non secondaria importanza delle indagini televisive in foro, oltre alla geometrizzazione delle gallerie, è rappresentato dalla possibilità di esegui-
re, in totale sicurezza, analisi diagnostiche sullo stato fisico delle calotte e dei pilastri. Inoltre successive ispezioni televisive nello stesso foro permettono di monitorare le cavità ed individuare eventuali evoluzioni geostatiche critiche.

Considerazioni sulle metodologie d'indagine

Alla luce di quanto sopra esposto appare che, pur nelle varie limitazioni esistenti, le indagini con metodi indiretti sono utili per una individuazione di massima della presenza o meno di vuoti, soprattutto in aree ove non esistono indizi certi della loro esistenza.

I metodi diretti danno informazioni geometriche più certe (profondità di calotta e altezze dei vuoti), ma non permettono alcuna analisi del livello di rischio di crollo.

Invece qualora sia necessario valutare la stabilità o meno della rete caveale è fondamentale individuare il reale andamento plano-altimetrico ipogeo, soprattutto qualora siano coinvolte problematiche di stabilità di edifici, fognature, etc.; inoltre si sottolinea la necessità di una Interpretazione Diagnostica delle gallerie per addivenire a realistiche valutazioni della stabilità e di pericolo geologico che può avvenire soltanto tramite analisi visiva dei pilastri e delle calotte (Fig. 6).

Consolidamento

In passato per la stabilizzazione degli ipogei, quando erano ancora esposti gli accessi delle reti caveali, si ricorreva alla realizzazione di muri e di pilastri che sorreggevano le calotte e diminuivano le luci delle gallerie. Oggigiorno queste gallerie sono invece frequentemente difficilmente accessibili data la obliterazione degli accessi, l'estesa urbanizzazione, i
dissesti in sotterraneo e la presenza frequente di acqua nelle reti caveali e pertanto i suddetti sistemi di consolidamento non sono in genere realizzabili.

Pertanto risulta che gli interventi di consolidamento degli ipogei più frequentemente utilizzati consistono nel loro riempimento.

Tali interventi debbono comunque essere progettati in relazione al materiale più idoneo da immettere nella cavità, il quale deve assicurare una permeabilità ed una rigidità dello stesso ordine di grandezza dei terreni (in genere pozzolanacei).

I materiali utilizzabili per il riempimento possono essere costituiti da pozzolana e calce fluitata in acqua oppure dei calcestruzzi a granulometria sabbiosa appositamente progettati per tali riempimenti e che hanno la caratteristica di essere permeabili e di avere una rigidità paragonabile agli ammassi pozzolanacei.

Per poter controllare i volumi immessi nelle cavità è comunque necessario suddividere gli ipogei in settori delimitati e ciò può essere realizzato con paratie di micropali attrezzati con "sacchi otturatori" opportunamente iniettati. Questa ultima metodologia è stata utilizzata per il riempimento della rete caveale presente al di sotto della Scuola Santa Beatrice al Portuense (CONTI, 1999).

Conclusioni

Gli studi finora realizzati sulle cavità sotterranee presenti nell'area di Roma hanno permesso di acquisire un grado di conoscenza sufficientemente preciso e affidabile relativamente ai settori cittadini in cui insistono situazioni particolari di dissesto. Spesso i risultati migliori si sono ottenuti integrando più metodologie,
molteplici infatti sono le incognite legate a fattori quali la profondità, la litologia o il grado di saturazione dei terreni.

Occorre tuttavia approfondire ulteriormente le indagini soprattutto in quei casi cui è indispensabile fornire precise valutazioni sulle condizioni di stabilità delle reti caveali ubicate in corrispondenza di fabbricati e infrastrutture. In queste situazioni infatti, è fondamentale individuare il reale andamento plano-altimetrico ipogeo.

E' opportuno inoltre realizzare una banca dati del sottosuolo in cui far convergere tutte le informazioni finora disponibili sul territorio del Comune di Roma, che venga continuamente aggiornata in tempo reale.

Soltanto con una capillare mappatura delle cavità infatti, è possibile raccogliere tutte le informazioni necessarie per poter compiere un'analisi della pericolosità collegando gli aspetti geologici, geotecnici e geometrici delle cavità con gli aspetti insediativi rappresentati dalle reti di sottoservizi o dalle varie tipologie fondali degli edifici.

Riferimenti bibliografici

1) AA.VV. (1999) - Atti del Convegno "Le cavità sotterranee nell'area urbana di Roma e nella Provincia. Problemi di pericolosità e gestione", SIGEA Lazio e Ufficio Geologico della Provincia di Roma, Roma.
2) AA.VV. (2002) - Le voragini catastrofiche, un nuovo problema per la Toscana. Atti del Convegno " Le voragini catastrofiche, un nuovo problema per la Toscana", Grosseto 31 marzo 2000.
3) AA.VV. (2004) - Stato dell'arte sullo studio dei fenomeni di sinkholes e ruolo delle amministrazioni statali e locali nel governo del territorio. Atti del 1° Seminario Roma 2021 maggio 2004.
4) AMANTI M., GISOTTI G., PECCI M. (1995) I dissesti a Roma. In Mem. Descr. Carta

Geol. d'It., L, 215-248, Roma.
5) BERNABINI M. (1965) - Un esempio di applicazione dei metodi sismici allo studio del comportamento statico dei pilastri in sotterraneo. Symp. Ass. Min. Sard., Cagliari, Iglesias.
6) BERNABINI M., ESU F., MARTINETTI S., RIBACCHI R. (1966) - On the stability of the pillars in a underground quarry worked through soft pyroclastic rocks, Proc. I Int. Congr. Rock Mech., pag. 285-291.
7) CATENACCI V. (1992) - Il dissesto geologico e geoambientale in Italia dal dopoguerra al 1990. Mem. Descr. Carta Geol. d'It., XLVII.
8) CERLESI E. (1990) - La costruenda rete fognaria e la latomia di Centocelle Vecchia, Roma.
9) COMMISSIONE VALUTAZIONE RISCHI AMBIENTALI (1994) - L'ambiente nel centro storico e a Roma. Secondo Rapporto: il suolo/sottosuolo. Comune di Roma, Dipartimento delle Politiche Territoriali, Roma.
10) CONTI M. (1999) - Interventi di risanamento e consolidamento di cavità sotterranee: il caso della scuola di S. Beatrice (Roma). Convegno "Le cavità sotterranee nell'area urbana di Roma e nella Provincia. Problemi di pericolosità e gestione" Provincia di Roma, Roma.
11) CORAZZA A., LEONE F., MAZZA R. (2002) Il quartiere di Monteverde a Roma: sviluppo urbanistico e dissesti in un'area urbana. Geologia dell'Ambiente, anno X, n.1, 8-18, SIGEA, Roma.
12) CORAZZA A., MAZZA R. BERTUCCIOLI P., PUTRINO P. (2002) - Il Progetto "Cavità" analisi del rischio dovuto a cavità sotterranee. Atti dei Convegni Lincei, XIX Giornata dell'Ambiente "Il dissesto idrogeologico. Inventario e prospettive", Roma 5 giugno 2001, 355-363.
13) CORAZZA A. (2004 a) - Il rischio di fenomeni di sprofondamento in Italia: le attività del Dipartimento della Protezione Civile. Atti del Convegno "Stato dell'arte sullo studio dei fenomeni di sinkholes e ruolo delle amministrazioni statali e locali nel governo del territorio" Roma 20-21 maggio 2004, pp. 319-330.
14) CORAZZA A. (2004 b) - Censimento dei dissesti dovuti a cavita sotterranee in Italia.

La scheda di rilevamento. Atti del Convegno "Stato dell'arte sullo studio dei fenomeni di sinkholes e ruolo delle amministrazioni statali e locali nel governo del territorio" Roma 20-21 maggio 2004, pp. 307 318.
15) CRESCENZI R., PIRO M., VALLESI R. (1995) - Le cavità sotterranee a Roma. In Mem. Descr. Carta Geol. d'It., L, 249-278, Roma.
16) ESU F. et Alii, (1965) - Insediamento edilizio in località Tre Fontane - Ricerche geotecniche. Edited by centro Coordinamento Progettazione Integrale, Edigraf, Roma, pag. 163-175.
17) FEDERICO F., SCREPANTI S. (2002) - Analisi della stabilità di cavità sotterranee in rocce piroclastiche del sottosuolo di Roma. Atti del XXI Convegno Nazionale di Geotecnica, AGI, L'Aquila, pag. 529-536.
18) GISOTTI G. (1994) - La stabilità delle gallerie adibite a coltivazione di funghi in via Appia Pignatelli (Roma). Rel. 20/09/1994, Servizio Geologico Nazionale, Roma.
19) GISOTTI G. (1997) - La stabilità delle gallerie adibite a coltivazione di funghi in via dell'Almone, 6 (Roma). Rel. 14/11/1997, Servizio Geologico Nazionale, Roma.
20) GRISOLIA M. (1999) - Problematiche fondazionali in presenza di cavità sotterranee. Convegno "Le cavità sotterranee nell'area urbana di Roma e nella Provincia. Problemi di pericolosità e gestione" Provincia di Roma, Roma.
21) LANZINI M. (1995) - Il problema delle cavità sotterranee a Roma (un rischio geologico). Geologia dell'Ambiente, III, n.3, SIGEA, Roma.
22) LEONE F. (2004) - Piogge e rischi, vent'anni di memorie dal sottosuolo. - Corriere della Sera 18/10/2004, Roma.
23) LEMBO FAZIO A., RIBACCHI R. (1990) - Problemi di stabilità di scarpate e cavità sotterranee in rocce piroclastiche. Politecnico di Torino, MIR, Vol. 11, pag. 1-13.
24) MARTINETTI S., RIBACCHI R. (1965) - Osservazioni sul comportamento statico dei pilastri in una cava in sotterraneo di materiali piroclastici. Symposium Probl. Geomin. Sardi, sez. II, B5, Cagliari.
25) MAZZA R., PAGANELLI D., CAMPOLUNGHI M.P., CAPELLI G., LANZINI M., SERENI M., DE FILIPPIS L. (2001) - Rischio di crolli da
cavità sotterranee nel settore orientale della città di Roma (comunicazione orale), III Forum Italiano di Scienze della Terra, Geoitalia (5-8 Settembre 2001, Chieti) (Abstract in Abstract Book del Congresso).
26) PELLEGRINO A. (2002) - Dissesti idrogeologici nel sottosuolo della città di Napoli Analisi ed interventi. Atti XXI Convegno Nazionale di Geotecnica, L'Aquila 11-14 settembre 2002.
27) PIPERNO F. (1929) - Relazione sul disastro del 14 ott. 1928. Commissione cooperativa edilizia del Senato, Roma.
28) SANTORO V. M., FEDERICI V. (1999) - Studi e indagini di un sistema di cavità sul Colle Aventino (Roma). Convegno "Le cavità sotterranee nell'area urbana di Roma e nella Provincia. Problemi di pericolosità e gestione" Provincia di Roma, Roma.
30) SANTORO V. M., FEDERICI V. (2002) - Studio del sistema di cavità nella zona di Via S. Giosafat, sul cole Aventino a Roma: valutazione del rischio potenziale scelta degli interventi di consolidamento per il ripristino della viabilità, Atti del XXI Convegno Nazionale di Geotecnica, AGI, L'Aquila, pag. 595-602.
31) SCIOTTI M. (1982) - Engineering Geological Problems due to old Underground Quarries in the Urban Area of Rome. Proc. IV Congr. IAEG, I, 211-225.
32) SCIOTII M. (1984) - Situazione di rischio,
naturali ed indotte, in alcuni centri abitati dell'Italia Centrale. Criteri di intervento. II Congr. Naz. "La città difficile", Ferrara.
33) SCIOTTI M. (1984) - Il problema del recupero delle zone interessate da vecchie cave in sotterraneo nell'area urbana di antichi centri abitati. Quarry and Construction.
34) SCIOTTI M. (1999) - Il sottosuolo delle aree urbane: risorsa o minaccia?. Convegno "Le cavità sotterranee nell'area urbana di Roma e nelia Provincia. Problemi di pericolosità e gestione" Provincia di Roma, Roma.
35) SCIOTTI M. (2001) - Rischio Cavità Sotterranee nell'area del Comune di Roma. Amm. Comunale di Roma.
36) SERVIZIO GEOLOGICO NAZIONALE (1995) - La Geologia di Roma. Il centro Storico. Mem. Descr. Carta Geol. d'It., L, Roma.
37) TORO B., DI FILIPPO M. (1999) - Individuazione di cavità nel sottosuolo con metodi gravimetrici. Il caso di via buie d'Istria. Convegno "Le cavità sotterranee nell'area urbana di Roma e nella Provincia. Problemi di pericolosità e gestione" Provincia di Roma, Roma.
38) VALLARIO A. (2001) - Il dissesto idrogeologico in Campania. CUEN ed., Napoli.
39) VENTRIGLIA U. (1971) - La geologia della città di Roma. Amm. Prov. di Roma, Roma.
40) VENTRIGLIA U., 2002. - La geologia del territorio del Comune di Roma. Amministrazione Provinciale di Roma. Roma.

I rischi geologici nell'area urbana di Roma

Calvino Gasparini, Francesco Leone, Roberto Brancaleoni, Fabio Garbin

Premessa

II territorio del Comune di Roma si estende su un'area vastissima che va dal complesso Sabatino a Nord, ai primi contrafforti dell'Appennino a Est, al margine dei Colli Albani a Sud, fino al litorale a Ovest.
Nel corso della sua bimillenaria storia la città si è espansa, quasi senza continuità, dagli originari Sette Colli fino a ben oltre l'attuale tracciato del Grande Raccordo Anulare.

Si è costruito su terreni "buoni" e su terreni più scadenti, soprattutto negli anni del boom economico, quando si sono realizzati molti palazzoni su terreni geologicamente infidi.

Si tratta di un territorio dalle enormi risorse, che non a caso ha visto sviluppare una delle più grandi civiltà della storia, ma al contempo presenta dei potenziali rischi che si celano nel variegato sottosuolo su cui ha preso forma la Città Eterna.

Tali rischi si presentano sotto varie forme: geologico in senso stretto, idraulico, sismico e vulcanico; nel territorio cittadino sono presenti, direttamente o per effetto indotto, tutte queste componenti.

A ciò si devono aggiungere le pesanti modificazioni del territorio avvenute nel corso della plurimillenaria storia della città di Roma che hanno trasformato, e a tratti
Calvino Gasparini, Geologo, Dirigente di Ricerca Istituto Nazionale di Geofisica e Vulcanologia Francesco Leone. (cfr. pag. 59)
Roberto Brancaleoni, Geologo, Direttore tecnico della Geoplanning Servizi per il Territorio S.r.I. Fabio Garbin. (cfr. pag. 23)
stravolto, l'aspetto fisico originario determinando condizioni favorevoli all'innesco di situazioni di dissesto.

Nell'ordine vengono analizzati il rischio geologico, quello idraulico (allagamento), quello sismico e, infine, il vulcanico, senza tralasciare oltre alle emergenze naturali anche altri aspetti legati al pesante intervento antropico sul territorio, quali il forte accumulo di terreni di riporto, lo scavo di cavità sotterranee e l'urbanizzazione incontrollata al di sopra dei fossi affluenti del Tevere e dell'Aniene che hanno di fatto amplificato le condizioni di esposizione ai rischi geologici dell'area urbana di Roma.

Il Rischio Geologico. I dissesti di versante

La zona collinare della città di Roma ubicata sulla destra orografica del Tevere, compresa tra Monte Mario e Ponte Galeria, rappresenta il settore più elevato della città e maggiormente esposto al rischio di frana in senso stretto.

Lungo i versanti più acclivi di quest'area, infatti, si sono originati ed evoluti nel corso del tempo numerosi fenomeni franosi spesso direttamente innescati dall'intervento dell'uomo.

Tale azione si è manifestata a segui-

Foto 1 - Frana di Villa Sciarra (Foto F. Leone).
to dell'intensa urbanizzazione, avvenuta all'inizio dello scorso secolo, che ha portato alla rapida modificazione dell'aspetto originario di alcuni settori cittadini quali Monte Mario e, soprattutto, Monteverde: gli sbancamenti eseguiti per le costruzioni degli edifici e della rete stradale, il riempimento delle depressioni ed il notevole accumulo di materiali di riporto, hanno provocato effetti decisamente più evidenti rispetto alle zone pianeggianti della città.

Nella zona di Monteverde, I'azione concomitante degli eventi sopra citati, è inserita in una situazione di predisposizione naturale all'instabilità; tutto ciò ha inevitabilmente prodotto, lungo il fianco orientale della collina, il susseguirsi di fenomeni franosi costituiti principalmente da scorrimenti sia traslativi che rotazionali.

Gli esempi più significativi e attualmente tenuti sotto osservazione, sono rappresentati dalle frane di Via A. Saffi e di Villa Sciarra.

Nel primo caso i segni del movimento tuttora in atto sul versante, attivato a seguito di precipitazioni particolarmente intense, sono ben visibili con crepe, fessure e rigonfiamenti sul muretto di Via A. Saffi, tra Via U. Bassi e Via delle Mura Gianicolensi.

I primi dissesti si sono manifestati a partire dai primi del 1900 con le lesioni a carico delle prime opere di urbanizzazione fino a culminare con la frana del 10 gennaio 1963 che causò gravissime lesioni ai muri di sostegno, alle sedi stradali e alle reti fognanti, determinando uno stato di pericolo che portò alla chiusura al traffico di tutta la zona compresa tra le Mura Gianicolensi in alto e Viale Trastevere in basso.

Nel caso di Villa Sciarra la zona
interessata dal dissesto è stata sottoposta dal Comune di Roma a controllo strumentale dall'inizio degli anni Novanta, a seguito della manifestazione di evidenze di movimento del terreno e di localizzate lesioni a carico delle mura; gli scorrimenti sembrano interessare i livelli più superficiali del terreno e hanno reso necessaria l'esecuzione di lavori di consolidamento del tratto di mura danneggiato.

Persino uno dei luoghi in cui è nata e si è sviluppata nel corso dei millenni la civiltà romana ha conosciuto fenomeni di dissesto. Il colle del Campidoglio, infatti, e più precisamente la leggendaria rupe Tarpea è in condizioni di diffusa instabilità come testimoniato dai frequenti crolli di blocchi di roccia e dei contrafforti murari che periodicamente si verificano.

L'evento più significativo degli ultimi anni si è verificato il 5 marzo del 1991 in occasione del crollo di parte del terrazzo sovrastante via di Monte Caprino.

Il Rischio Idraulico. Eventi pluviometrici, idrografia e allagamenti

L'emergenza più importante nella millenaria storia di Roma è stata senz'altro costituita dal rischio inondazione: fino alla costruzione dei muraglioni lungo il tratto cittadino del Tevere, il centro storico veniva allagato almeno quattro, cinque volte al secolo.

Nel 1598 si verificò l'episodio più catastrofico e l'altezza delle acque raggiunse i 6,5 metri al Pantheon.

L'ultima grande inondazione si è verificata nel 1870, pochi mesi dopo l'Unità d'Italia, e buona parte della città rimase sott'acqua. Nell'ultimo secolo non si sono verificate piene eccezionali, anche perché, la costruzione di 20 sbarramenti
artificiali lungo il corso del Tevere ha determinato una drastica riduzione delle portate massime del fiume.

Al giorno d'oggi, tuttavia, permane ancora elevato il rischio allagamento; molto spesso infatti, a seguito di un violento temporale in molte zone della città si registrano pesanti allagamenti.

Per di più si sottovaluta che la fenomenologia meteorologica più critica del clima di Roma è rappresentata dalle precipitazioni intense di breve durata che possono scaricare al suolo quantitativi di pioggia davvero notevoli, come avvenne durante il nubifragio del 27 agosto 1953 quando, in un'area di limitata estensione comprendente gran parte del centro storico di Roma, si osservarono valori di precipitazione di circa 100 mm in un'ora, pari al 15% del totale annuo.

Recenti studi sul regime pluviometrico dell'area romana hanno tra l'altro confermato che la frequenza di questi eventi di precipitazione di massima intensità, è notevolmente aumentata negli ultimi decenni.

Anche in fase di progettazione delle opere idrauliche, inoltre non si tiene in considerazione questa caratteristica climatologica e tali interventi risultano

Foto 2-1870, Tempio di Vesta (raccolta Bernoni).
costantemente sotto dimensionati.
A ciò si aggiunge l'insufficiente funzionamento della rete fognaria, spesso abbinato alla mancata ripulitura dei tombini da foglie e detriti che provoca, anche a seguito di precipitazioni non classificabili come eccezionali, l'allagamento di molte arterie cittadine comportando numerosi disagi.

Per riuscire a comprendere la ripetuta insorgenza di questi fenomeni è necessario ricordare che tutto il territorio su cui sorge la città di Roma era un tempo caratterizzato dalla presenza di numerosi torrentelli, fossi, piccoli corsi d'acqua, che servivano a convogliare verso quelli maggiori le precipitazioni non assorbite dal terreno.

La maggior parte di essi sono scomparsi o non riescono più a svolgere la loro funzione in quanto deviati, interrati o trasformati in discariche di materiali.

Al tempo dei Romani i "Setti Colli" avevano contorni molto più decisi e marcati di quanto non appaia ai nostri giorni ed erano separati da profonde incisioni su cui era impostata una ricca circolazione idrica.

I rilievi collinari del centro storico di Roma sulla sinistra del Tevere avevano come limiti naturali a nord il fiume Aniene, a est il fosso dell'Acqua Bulicante, oggi quasi completamente scomparso, che da Tor Pignattara scendeva verso Portonaccio e la Stazione Tiburtina, confluendo infine nell'Aniene all'altezza di Montesacro.

Molte zone furono ovviamente bonificate in tempi antichi, è sorprendente tuttavia scoprire che nella carta topografica di Roma stampata dell'Istituto Geografico Militare nel 1949, sono indicati molti corsi d'acqua, di cui, nel giro di pochi decenni si è persa completamente traccia.

Nell'area nord della città scorrevano il Fosso dei Frati e quello della Rimessola che confluivano in quello dell'Acqua Traversa, del quale è tributario il Fosso dei Due Ponti.

Nel quartiere Aurelio, tra Via di Brava e Via degli Aldobrandeschi, scorreva il Fosso di Acquafredda alimentato dalle acque del Fosso di Val Cannuta e da quello di Brava.

Nel settore meridionale della città, partendo dalla zona di Bravetta, si sviluppava per diversi chilometri il Fosso della Magliana che defluiva nel Tevere all'altezza del Trullo.

Ancora adesso in quest'area rimane traccia dei fossi di Affogalasino, dei Mattei e di Papa Leone.

Sul lato orientale di Roma scorrevano invece il Fosso di Tor Tre Teste, che a seguito di forti temporali si ingrossava paurosamente, e il Fosso di Valle Lunga che terminava il suo corso nell'Aniene.

Molto più importanti risultavano, infine, i fossi di Tor Bella Monaca e di Tor Sapienza.

La presenza di questa sviluppata idrografia superficiale garantiva in passato l'esistenza di un efficace sistema di scolo naturale delle acque, che pur se occasionalmente creava dei problemi, permetteva di evitare le conseguenze più gravi delle alluvioni.

La cementificazione selvaggia di quasi tutte le aree disponibili, realizzata grazie al livellamento del terreno che si è ottenuto colmando i fossi, ha sconvolto il naturale deflusso delle acque verso le quote più basse e da queste verso il Tevere e l'Aniene.

Queste alterazioni dell'ambiente non sono state compensate dalla creazione di percorsi alternativi allo scorrimento

Foto 3-1915, San Paolo (Archivio Servizio Idrografico di Roma).

Foto 5-1953, Piazza del Popolo (Archivio Servizio Idrografico di Roma).
delle acque piovane e alla loro naturale infiltrazione nel terreno; per questo motivo basta un forte temporale per provocare allagamenti in città e per esporre numerose zone della periferia a rischi incalcolabili.

Il Rischio Sismico. Terremoti storici e cedimento dei terreni di fondazione

La città di Roma classificata come Zona Sismica 3, non sorge su un'area sismogenetica in senso stretto, in quanto non esistono grandi strutture sismogenetiche: al territorio cittadino vanno comunque attribuiti gli eventi strumentali

Foto 4 - 1937, Via Portuense (Archivio Servizio Idrografico di Roma).

Foto 6 - Anni Settanta, Colosseo (archivio Il Tempo)
del 1896, del 1909 e 1953.
Pur tuttavia essa risente degli effetti indotti dai terremoti che hanno come epicentro sia l'area dei Colli Albani nella quale si sviluppano eventi sismici che hanno una Magnitudo massima pari a circa 4,5, che le aree sismogenetiche appenniniche che hanno prodotto violenti sismi pari a circa 6,5 di Magnitudo.

La sismicità di Roma, se analizziamo un periodo storico molto lungo che ci porta fin quasi alle sue origini e di cui abbiamo testimonianze indirette, non può certamente considerarsi trascurabile.

E' sorprendente scoprire che ogni 500 anni si sono verificati eventi con risentimenti superiori al VII grado della scala

Mercalli, e ogni 100 anni quelli con intensità superiore al VI grado della scala Mercalli.

Il terremoto del Fucino del 13 gennaio del 1915 è stato indubbiamente il più forte dell'ultimo secolo, fu avvertito in quasi tutta Italia e ha raggiunto nell'area epicentrale un'intensità pari all'XI grado della scala Mercalli.

Nella città di Roma, distante 80-100 km . dall'epicentro, i risentimenti sono stati del VI-VII grado della scala Mercalli e ci furono effetti molto diffusi su edifici monumentali: furono segnalate lesioni non gravi alle Mura Aureliane e il crollo di alcuni metri di muro dell'acquedotto Claudio vicino a Porta Furba.

Seriamente lesionate furono le chiese di Sant'Agata dei Goti e Santa Maria alla Scala, nonché il campanile di Sant'Andrea delle Fratte e la cupola di San Carlo ai Catinari.

Danni lievi hanno inoltre interessato una quindicina di chiese ed una ventina di palazzi.

L'evento sismico più forte risentito in Roma di cui si ha notizia è probabilmente il terremoto del 9 settembre del 1349 che ha provocato danni riferibili ad un'intensità pari all'VIII grado della scala Mercalli.

Per quanto riguarda la distribuzione dei danni si è infine osservato che, in occasione dei terremoti più forti, i più rilevanti sono stati registrati proprio nell'area del centro storico.

Ciò si è verificato perché gli edifici sono stati costruiti per buona parte su terreni alluvionali che risultano particolarmente sensibili alle sollecitazioni sismiche.

La cronaca di questi ultimi anni conferma la geografia, o meglio la geologia, del rischio. I palazzi che si aprono a Via Giustiniano Imperatore (lungo l'asse do-
ve una volta scorreva il fosso di Grottaperfetta), i dissesti del quartiere di Colli Aniene, lo storico caso del Palazzo di Giustizia e il recentissimo sgombero al Flaminio (settembre 2005) di un edificio in Via Cardinal De Luca.

Tali dissesti si verificano poiché i settori posti nella valle alluvionale del Tevere e nelle valli dei suoi affluenti hanno come substrato geologico sedimenti recenti di natura argillosa e torbosa con scadenti valori di resistenza ed altissimo grado di compressibilità. Inadeguati, talvolta anche sprovveduti o almeno imprudenti, interventi edilizi hanno innescato una sorta di ordigno ad orologeria, che si esplica con l'inesorabile movimento di alcuni manufatti, i quali con il loro peso comprimono questi livelli di "fango" non in grado di sopportare il peso imposto, facendo mancare alle strutture in elevazione l'appoggio necessario delle fondazioni.

Se a ciò aggiungiamo la presenza nel territorio urbano di numerose cavità sotterranee e l'esistenza in molte aree di un consistente accumulo di materiale di riporto, possiamo affermare che anche terremoti di bassa intensità possono determinare situazioni di concreto pericolo specialmente in relazione alla presenza di un patrimonio storico, artistico e monumentale presente nella città di Roma, esposto a condizioni di elevata vulnerabilità.

Il Rischio vulcanico. Le emanazioni gassose

La rapida e massiccia espansione della città, avvenuta a partire dall'immediato dopoguerra, lungo il settore meridionale della Campagna Romana, a ridosso delle propaggini del Vulcano La-
ziale, ha fatto si che in alcune porzioni urbanizzate del territorio del Comune di Roma sia presente un rischio vulcanico, che si concretizza con fuoriuscite di gas dal sottosuolo, sia lungo fratture e discontinuità presenti sul terreno, sia durante lo scavo di pozzi che vanno ad intercettare la falda in pressione.

L'ultima eruzione nell'area dei Colli Albani si è registrata circa 7000 anni fa. Tali dati sono confortati sia da datazioni radiometriche, sia implicitamente da storiche esondazioni catastrofiche del Lago Albano (le ultime circa 25 secoli or sono) con fuoriuscita delle acque lacuali presso la soglia a quota più bassa del bordo craterico immediatamente retrostante la piana di Ciampino. Non a caso infatti i Romani, per prevenire l'incombente pericolo, drenarono le acqua al di fuori del lago tramite la realizzazione di un tunnel.

Si ritiene, verosimilmente, che tali fuoriuscite di acqua dal cratere siano state principalmente dovute ad un forte arricchimento di CO_{2} nelle acque profonde del lago, derivante dall'immissione di fluidi caldi provenienti dagli alti strutturali del basamento carbonatico presente al di sotto del complesso vulcanico stesso, ad esempio in concomitanza con eventi sismici.

Esiste tuttora un'attività idrotermale e gassosa che porta all'emissione principalmente di anidride solforosa e idrogeno solforato.

Studi recenti indicano che l'area centrale del distretto vulcanico è ancora attiva: tale attività si manifesta con frequenti sciami sismici ed è anche testimoniata dalla presenza di numerose sorgenti minerali e termali oltre che, naturalmente, dalle manifestazioni idrotermali.

Nell'area del territorio comunale di

Roma ai confini con i comuni di Ciampino e Marino si sono registrate delle pericolose emissioni di anidride carbonica e $\mathrm{H}_{2} \mathrm{~S}$ che in passato non solo hanno causato il decesso di molti capi di ovini e bovini, ma hanno anche provocato la morte di alcuni uomini; per tale motivo in località Cava dei Selci l'accesso a molti terreni è stato interdetto.

Le rocce vulcaniche presenti in queste aree determinano inoltre un rischio Radon: questo elemento chimico costituisce un pericolo mortale anche per l'uomo.

Per tale motivo il Dipartimento della Protezione Civile ha elaborato e distribuito alla popolazione un libretto intitolato "Rischio da emanazioni gassose nei comuni di Ciampino e Marino".

Tra le misure suggerite per difendersi dal pericolo segnaliamo la necessità di aerare sempre, prima di accedervi, i locali chiusi da molto tempo quali cantine, garage e lavatoi.

Non utilizzare locali interrati e seminterrati, dove solitamente tali gas ristagnano, per attività abitative, lavorative e ricreative e soprattutto per ricovero notturno.

Vietare sempre l'accesso agli scantinati ai bambini, se non accompagnati da adulti.

Dotare i locali interrati e seminterrati di un impianto di ventilazione forzata per garantire un'adeguata circolazione dell'aria e impedire pericolosi accumuli di gas tossici negli ambienti chiusi.

Evitare la permanenza prolungata in strutture depresse, eventualmente presenti all'esterno delle abitazioni come piscine vuote, canali di raccolta delle acque, cisterne interrate o pozzi, e in ogni caso accedervi con grande prudenza ed essendo sicuri che all'esterno ci sia qual-
cuno in grado di prestare soccorso.
E' molto importante inoltre segnalare con la massima tempestività la presenza di situazioni potenzialmente pericolose per la salute pubblica come animali morti senza motivi apparenti, ingiallimento e repentino appassimento di alberi e piante, fuoriuscita di gas da pozzi e scavi.

Da tempo nella zona è ben nota l'emergenza costituita dalle emanazioni gassose che fuoriescono dal sottosuolo, per tale motivo sono state appositamente emanate delle rigide normative che impongono l'applicazione di precise regole e precauzioni da seguire al momento della costruzione di nuovi fabbricati.

In conclusione, anche secondo i recenti studi di Funiciello et alii del 2002, "Con questi nuovi dati il vulcano dei Colli Albani viene fortemente ringiovanito... e deve essere considerato quiesciente ... Alla prospettiva di riattivazione eruttiva in un futuro più o meno lontano, si aggiunge la pericolosità connessa a fenomeni di esondazione o alla formazione di nubi di gas tossici, che sono ripetutamente avvenuti in un passato geologicamente molto recente. L'intensa urbanizzazione dei suoi versanti e la prossimità di Roma ne fanno un vulcano a rischio potenziale molto elevato".

I Terreni di riporto. Le modifiche del territorio e l'attività estrattiva

L'aspetto originario del paesaggio romano è stato ampiamente modificato dai processi che, nei circa tre millenni della sua storia, hanno determinato lo sviluppo della città di Roma.

Nel corso dei secoli si sono infatti susseguite opere di sbancamento finalizzate alla costruzione di edifici e infra-
strutture o dovute all'intensa attività estrattiva, sono stati realizzati inoltre riempimenti a scopo di bonifica, colmamenti e canalizzazioni dei corsi d'acqua; infine, sono presenti accumuli di macerie e di rifiuti.

Tutti questi interventi hanno trasformato i caratteri fisici del territorio determinando il ricoprimento pressoché totale dell'area urbana con una coltre di terreni di riporto che può raggiungere, in alcuni casi, uno spessore superiore ai 20 metri.

L'importanza della presenza di questi materiali nel suolo cittadino è testimoniata dal fatto che in tutte le carte geologiche della città di Roma, i riporti antropici vengono puntualmente segnalati e considerati come un vero e proprio orizzonte stratigrafico: il più recente che affiora nella zona.

Si tratta di materiali di diversa origine, molto eterogenei ed eterometrici: in una matrice più fine costituita da terreni vulcanici e/o sedimentari rimaneggiati, si ritrovano, infatti, ciottolami, pezzame tufaceo e frammenti di manufatti di varia natura ed epoche diverse.

Il grado di compattazione e le caratteristiche geotecniche di questi terreni possono variare notevolmente in funzione della loro natura e della loro età.

Il riconoscimento dei materiali di riporto rappresenta un segno tangibile di come sia profondamente cambiata la morfologia della città a seguito dell'intervento dell'uomo: un esempio è costituito dalla creazione di monti artificiali e dal livellamento delle asperità originarie del paesaggio, mediante lo sbancamento di intere colline e il colmamento di antiche valli fluviali.

L'esempio più emblematico di questi modifiche è rappresentato dal rilievo ar-
tificiale del "Monte di Cocci" a Testaccio, interamente costruito da frammenti di anfore e vasellame antico proveniente dal vicino porto fluviale; esso si erge per circa 50 metri dal livello del Tevere.

Anche Monte Citorio, sorto sul sepolcro degli Antonini, Monte Savello, costruito sulle rovine del Teatro di Marcello, Monte dei Cenci, ubicato sui resti del Teatro Balbo e Monte della Farina, realizzato sulle rovine del Teatro di Pompeo: questi sono i rilievi artificiali più importanti che sorgono nella zona del centro storico cittadino.

Un altro esempio eclatante di sostanziale modifica dell'aspetto fisico originario è rappresentato dallo sbancamento di quella parte del Colle Quirinale che si univa al Campidoglio, fatto eseguire dall'imperatore Traiano: la sommità della coIonna a lui dedicata, infatti, indica quale era il livello del terreno in quel punto.

Durante il periodo del Fascismo poi, per realizzare Via dei Fori Imperiali, si ebbe l'eliminazione della collina Velia, un rilievo che univa il Colle Oppio al Palatino.

Anche la costruzione della stazione Ostiense ha determinato la distruzione di un'intera collina prospiciente Porta San Paolo.

Un altro aspetto molto importante, correlato all'intervento dell'uomo, è costituito dall'intensa attività di sfruttamento dei materiali da costruzione presenti nell'area urbana di Roma.

Se per quanto riguarda le rocce vulcaniche, presenti principalmente nel quadrante orientale cittadino, le coltivazioni avvenivano essenzialmente in sotterrano, senza quindi lasciare traccia sulla topografia, gli sbancamenti operati per estrarre l'argilla, affiorante lungo i versanti collinari del settore occidentale del-
la città di Roma, hanno lasciato profonde ferite sul territorio.

La coltivazione di numerose cave nelle zone di Monte Mario, Balduina, Monti di Creta, Vaticano e Gianicolo si è protratta quasi ininterrottamente dal I secolo d.C. fino ai primi anni Sessanta dello scorso secolo.

In quest'area sorsero molte fornaci impiegate per la cottura delle argille e la produzione di laterizi e vasellame. Tra la fine dell'Ottocento e l'inizio del Novecento nella Valle dell'Inferno furono installati ben 13 stabilimenti e tale toponimo sembra essere riferito proprio ai fumi costantemente prodotti da queste fornaci.

Sulle pendici di Monte Mario invece, due fornaci erano ubicate in prossimità di Villa Madama, un'altra si trovava all'inizio di Via Trionfale ed un'ultima era in prossimità dell'attuale Piazza Bainsizza.

Le Cavità sotterranee. Sviluppo urbanistico e dissesti

I dissesti geologici più frequenti, che si sono manifestati in questi ultimi anni nella nostra città, sono riconducibili alla presenza di cavità nel sottosuolo.

La loro presenza è dovuta al fatto che fin dall'antichità nella nostra città era consuetudine sfruttare i materiali da costruzione estraendoli da cave sotterranee, situate nelle immediate vicinanze dell'opera stessa, con lo scopo di ridurre gli oneri e le difficoltà connesse al trasporto.

Le caratteristiche geologiche del territorio, costituito in gran parte da prodotti dell'attività vulcanica dell'apparato sabatino e dei Colli Albani, ed il particolare assetto morfologico dell'area romana nella quale prevalgono piccole colline tufacee separate dalle valli alluvionali dei princi-

Foto 7 - Cavità di Via G. Valli (foto Geoplanning).
pali corsi d'acqua, sono i principali fattori che nel corso dei secoli hanno determinato l'attuale situazione del sottosuolo della città.

Anche a Roma quindi, come in molti centri urbani edificati in regioni vulcaniche, sono presenti numerosissime cavità sotterranee di varia origine storica e dalle diverse funzioni: cave, catacombe, cavità di interesse archeologico, cunicoli idraulici, acquedotti e fognature costituiscono le principali tipologie di vuoti esistenti nel sottosuolo cittadino.

Dal punto di vista storico l'origine della maggior parte delle cavità si può ricondurre al periodo etrusco-romano, durante il quale furono realizzate, per esigenze legate all'urbanizzazione del territorio, molte opere idrauliche quali acquedotti e fognature scavati nel sottosuolo.

Il grande sviluppo della città pose inoltre il problema dell'approvvigionamento dei materiali da costruzione e di conseguenza proprio i terreni vulcanici furono intensamente sfruttati mediante cave in sotterraneo.

Altri scavi vennero inoltre effettuati per esigenze di culto e molto spesso cimiteri e ipogei riutilizzavano vecchie cave abbandonate.

In epoca medioevale ci si limitò a utilizzare le cavità già esistenti per gli usi più
svariati; durante il corso dei secoli e fino ai primi anni del Novecento furono spesso riutilizzate per le attività estrattive le vecchie cave di pozzolana, sabbia e ghiaia.

Durante il periodo bellico infine, molte delle cavità esistenti all'interno della città vennero utilizzate come ricoveri e rifugi di emergenza, oltre che come comandi e depositi militari.

Attualmente l'uso delle cavità è limitato a casi sporadici: vengono infatti per 10 più adibite a fungaie, depositi di materiali vari e autorimesse.

L'attività di scavo di nuove cavità è ripresa in epoca moderna, in occasione della realizzazione di infrastrutture viarie, delle gallerie di servizi, dei sottopassaggi, ma soprattutto delle linee metropolitane e ferroviarie.

L'esistenza delle cavità storiche, ritrovate praticamente ovunque nel territorio urbano, ha condizionato in vario modo lo sviluppo cittadino e soprattutto le attività edilizie.

Fino al secolo scorso, infatti, Roma aveva una estensione molto limitata e la maggioranza delle cavità sotterranee si trovava in quartieri estremamente periferici o addirittura in aperta campagna.

I primi problemi si presentarono con l'inizio dalla grande espansione edilizia avvenuta in occasione della riunificazione del Regno d'Italia e dello spostamento della Capitale a Roma.

Fu proprio in occasione della costruzione dei grandi edifici pubblici, come i Ministeri, che si sono verificate le prime interferenze fra strutture di fondazione e cavità sotterranee delle quali si era ormai dimenticata l'esistenza.

La presenza delle cavità è stata accertata anche durante il successivo
sviluppo della città in direzione sud est, tità di cavità di interesse archeologico. verso i quartieri Appio, Tuscolano, Casilino e Tiburtino, dove sono presenti numerosi ed estesi complessi di cave in sotterraneo, oltre ad una grande quan-

Proprio in queste zone si sono verificati i maggiori problemi e la cronaca cittadina negli ultimi tempi si è più volte interessata a questa realtà.

Figura 1 - Ubicazione di alcuni dei "pericoli" geologici presenti nell'area urbana di Roma.

Il problema delle cavità sotterranee è divenuto un'emergenza per la città proprio in questi ultimi decenni quando a causa dell'espansione urbana si sono creati molti fattori di potenziale dissesto.

Il peso dei fabbricati sovrastanti, spesso costruiti ignorando la presenza di vuoti nel sottosuolo, e il continuo aumento del traffico veicolare inducono nel sottosuolo sforzi e deformazioni, che in presenza di cavità vanno a concentrarsi proprio in corrispondenza dei pilastri e delle pareti verticali provocando lesioni e distacchi.

Ad aggravare la situazione concorre anche lo stato di manutenzione delle infrastrutture idrauliche: le perdite da acquedotti e fognature provocano, infatti, il degrado dei materiali favorendo ulteriori dissesti.

Riferimenti bibliografici

1) AGAMENNONE G. (1924) - Contributo allo studio del terremoto romano del 1 novembre 1895. Boll. Soc. Sism. It., 24, 89-91, Roma.
2) AMANTI M., GISOTTI G., PECCI M. (1995) I dissesti a Roma. Mem. Descr. Carta Geol. d'It., 50, 215-248, Roma.
3) AMBROSINI S., CASTENETTO S., CEVOLANI F., DI LORETO E., FUNICIELLO R., LIPERI R., MOLIN D. (1986) - Risposta sismica dell'area urbana di Roma in occasione del terremoto del Fucino del 13 gennaio 1915. Risultati preliminari. Mem. Soc. Geol. It., vol 35/1, Roma.
4) ARNOLDUS-HUIZENDVELD A., CORAZZA A., DE RITA D., ZARLENGA F. (1997) - Il paesaggio geologico ed i geotopi della Campagna Romana. Quaderni dell'Ambiente, 5, Fratelli Palombi Ed., Roma.
5) BOSCHI E., DI BONA M. FUNICIELLO R., MALAGNINI L., MARRA F., ROVELLI A., SALVI S. (1990) - La geologia del sottosuolo in relazione al comportamento sismico della città di Roma. Atti del VII Congresso Nazionale dell'Ordine dei Geologi, 1990, Ro-
ma.
6) BRANCALEONI R., CORAZZA A., GARBIN F., LEONE F., MORASCHINI C., SCARAPAZZI M. (2003) - Il Rilievo di Monte Mario a Roma: sviluppo urbanistico e dissesti. Un caso di Geologia Urbana. Geologia dell'Ambiente, Anno XI, 3, 2-14, SIGEA, Roma.
7) BOZZANO F., FUNICIELLO R., MARRA F., ROVELLI A., VALENTINI G. (1995) - Il sottosuolo dell'area dell'Anfiteatro Flavio a Roma. Geologia Applicata e Idrogeologia, 30, 417-436.
8) CARBONI M.G., FUNICIELLO R., PAROTTO M., MARRA F., SALVI S., CORAZZA A., LOMBARDI L., FEROCI M. (1991) - Geologia e idrogeologia del centro storico di Roma. Progetto Strategico Roma Capitale, CNR.
9) CIFELLI F., DONATI S., FUNICIELLO F. (1999a) - Distribution of Effects in the Urban Area of Rome, for the October 14, 1997 (central Italy) Event. Physics and Chemistry of the Earth, 24, 6, 483-488.
10) CIFELLI F., DONATI S., FUNICIELLO F., TERTULLIANI A. (1999b) - High-density macroseismic survey in urban areas. Part 1: proposal for a methodology and its application to the city of Rome. Annali di Geofisica, 42, 1, 99-114.
11) CIFELLI F., DONATI S., FUNICIELLO F., ROVELLI A., TERTULLIANI A., FUNICIELLO R. (1998) - Effetti macrosismici nell'area urbana di Roma in occasione di due terremoti della sequenza umbro-marchigiana a difersa profondità ipocentrale. Atti del Congresso Nazionale della Società Geologica Italiana, Palermo, Italy, 21-23 settembre 1998.
12) COLOZZA R., DOLCE M. (1995) - Vulnerabilità e rischio di danneggiamento degli edifici. In "La Geologia di Roma. Il centro storico". Mem. Descr. Carta Geol. d'It., 50, 497-542.
13) COMMISSIONE VALUTAZIONE RISCHI AMBIENTALI (1994) - L'ambiente nel centro storico e a Roma. Secondo Rapporto: il suolo/sottosuolo. Comune di Roma, Dipartimento delle Politiche Territoriali, Roma.
14) COMUNE DI ROMA (1997) - Relazione sullo stato dell'ambiente a Roma. Maggioli Ed., Roma.
15) CORAZZA A., LANZINI M, ROSA C., SALUCCI R. (1999) - Caratteri stratigrafici, idro-
16) LEONE I. (1986) - Problemi connessi al consolidamento di una pendice del colle del Gianicolo in Roma interessata da moti franosi. A.G.I. - XVI Convegno Nazionale di Geotecnica, 14-16 Maggio, Bologna.
17) LUGLI G. (1951) - Come si è trasformato nei secoli il suolo di Roma. Rend. Sci. Mor., 6, Roma.
18) MANGIANTI F., LEONE F. (2003) - Analisi pluviometrica dei dati giornalieri e orari registrati presso l'Osservatorio meteorologico del Collegio Romano nel periodo 19412000. Accademia Nazionale dei Lincei, Convegno "La Siccità in Italia", Roma, 21 marzo 2003.
19) MANGIANTI F., LEONE F. (2004) - Analisi delle precipitazioni nel periodo 1941-2000 al Collegio Romano. Accademia Nazionale dei Lincei, Roma, Atti dei Convegni Lincei, 204, "La Siccità in Italia", pp.195-202.
20) MARRA F. (1993) - Stratigrafia e assetto geologico-strutturale dell'area romana tra il Tevere e il Rio Galeria. Geologica Romana, 29, 515-535, Roma.
21) MARRA F., ROSA C. (1995) - Stratigrafia e assetto geologico dell'area romana. In Mem. Descr. Carta Geol. d'It., L, 49-112, Roma.
22) MARTINELLI G. (1913) - Terremoto romano del 31 agosto 1909. Boll. Soc. Sism. It., 13, 3-11, Roma.
23) MARRA F., CARBONI M.G., DI BELLA L., FACCENNA C., FUNICIELLO R., ROSA C. (1995 a) - Il substrato plio-pleistocenico nell'area romana. Boll. Soc. Geol. It., 114, 195-214,

Roma.
50) - MOSCATELLI M., MILLI S., PATERA A., STIGLIANO F., STORONI RIDOLFI S., BRANCALEONI R., GARBIN F. - Caratteristiche geologiche e geotecniche dei terreni della città di Roma. Atti del II Congresso GeoSed 2004 "La geologia del sedimentario nella ricerca di base e nelle sue applicazioni" CNR, Roma, 22-28 Settembre 2004.
51) PONZI G. (1875) - Dei Monti Mario e Vaticano e del loro sollevamento. Atti R. Acc. Lincei, 2, Roma.
52) PORTOGHESI P. (1981) - Roma un'altra città. Roma.
53) SABETTA F., PACIELLO A. (1995) - Valutazione della pericolosità sismica. In "La Geologia di Roma. Il centro storico". Mem. Descr. Carta Geol. d'It., 50, 497-542.
54) THOMAS R.G. (1989) - Geology of Rome, Italy. Bulletin of the Association of Engineering Geologists, 36, 4, 415-476.
55) TERTULLIANI A., RIGUZZI F. (1995) - Eathquakes in Rome during the past one hundred years. Annali di Geofisica, 38, 5-6, 581-590.
56) VENTRIGLIA U. (1971) - La geologia della città di Roma. Amm. Prov. di Roma, Roma.
57) VENTRIGLIA U. (1990) - Idrogeologia della Provincia di Roma. Provincia di Roma, Ass. LL. PP. Viab. e Trasp., Roma.
58) VENTRIGLIA U. (2002) - Geologia del territorio del Comune di Roma. Amm. Prov. di Roma, Servizio Geologico Difesa del Suolo, Roma.
geologici e geotecnici delle alluvioni tiberine nel settore del Centro Storico di Roma. Il Quaternario, 12(2), 215-235, Roma.
16) CORAZZA A., LOMBARDI L. (1995) - Idrogeologia dell'area del centro storico di Roma. In Mem. Descr. Carta Geol. d'It., L, 173-211, Roma.
17) CORAZZA A., GIULIANO G. (1994) - Idrogeologia e vulnerabilità delle risorse idriche della città di Roma. L'ambiente del centro storico e a Roma, Secondo Rapporto: il suolo/sottosuolo, Comune di Roma, Roma.
18) CORAZZA A., LOMBARDI L., LEONE F., BRANCALEONI R., LANZINI M. (2004). - Le acque sotterranee nei terreni di riporto della citta' di Roma. Atti Convegno "Ecosistema Roma", Accademia dei Lincei, Roma, 14 -16 Aprile 2004.
19) CORAZZA A., LEONE F., MAZZA R. (2002) Il quartiere di Monteverde a Roma: sviluppo urbanistico e dissesti in un'area urbana. Geologia dell'Ambiente, anno X, n.1, 8-18, SIGEA, Roma.
20) CRESCENZI R., PIRO M., VALLESI R. (1995) - Le Cavità sotterranee a Roma. In "La Geologia di Roma. Il centro storico". Mem. Descr. Carta Geol. d'It., 50, 497-542.
21) DE ANGELIS D'OSSAT G. (1942) - Nuove sezioni geologiche dei Colli di Roma. Boll. Soc. Geol. It., 61, Roma.
22) DE PANSILIS M. (1959) - Attività sismica in Italia dal 1953 al 1957. Annali di Geofisica, 12, 7-9, Roma.
23) DI LORETO E. \& GISOTTI G. (1994) - Geologia e idrologia urbana. Verde Ambiente, n. 6 (Speciale Roma), Roma.
24) DONATI S., FUNICIELLO R., ROVELLI A. (1999) - Seismic response in archaeological areas: the Case-Histories of Rome. Journal of Applied Geophysics, 41, 229239.
25) DONATI S., (2000) - Guida al sottosuolo e alla risposta sismica di Roma. DEI, Tipografia del Genio Civile, Roma.
26) FACCENNA C., FUNICIELLO R., MARRA F. (1995) - Inquadramento geologico strutturale dell'area romana. In Mem. Descr. Carta Geol. d'It., L, 31-118, Roma.
27) FEROCI M., FUNICIELLO R., MARRA F., SALVI S. (1990) - Evoluzione tettonica e paleogeografica plio-pleistocenica dell'area di Roma. Il Quaternario, 3 (2), 141-148, Ro-
ma.
28) FUNICIELLO R., MARRA F., PAROTTO M. (1993) - Attraverso la città di Roma. In Guide Geologiche Regionali, vol. 5, "Lazio", Società Geologica Italiana, 229-245, Roma.
29) FUNICIELLO R., a cura di (1995) - La Geologia di Roma. Il centro storico. Memorie descrittive della carta geologica d'Italia, 50, Roma.
30) FUNICIELLO R., THIERY A. (1998) - Il balcone di Roma: da Montedoro a Monteverde. Fratelli Palombi Editori, Roma.
31) FUNICIELLO R., GIORDANO G., DE RITA D., CARAPEZZA M.L., BARBERI F. (2002) - L'attività recente del cratere del Lago Albano di Castelgandolfo. Rend. Fis. Acc. Lincei s. 9, v. 13, 113-143, Roma.
32) GEOPLANNING Servizi per il Territorio S.r.l. (1999) - Relazione geologico-tecnica: indagini geognostiche e georadar nel giardino di Villa Mazzanti - Roma. Relazione inedita.
33) GIGLI E. (1971) - Cosa c'è sotto Roma? Monte Mario Vaticano Gianicolo un'origine comune. Capitolium, 46, (7/8), Roma.
34) GISOTTI G., ZARLENGA F. (1998) - La geologia della città di Roma tra urbanistica e archeologia. Geologia dell'Ambiente, 4, SIGEA, Roma.
35) INSOLERA I. (1962) - Roma moderna, un secolo di storia urbanistica. Piccola Biblioteca Einaudi, Giulio Einaudi editore S.p.A., Torino.
36) LANZINI M. (1995) - Il problema delle cavità sotterranee a Roma (un rischio geologico). Geologia dell'Ambiente, 3, SIGEA, Roma.
37) LEONE F. (2003) - Terremoti: paure antiche e nuove regole per costruire. - Corriere della Sera 21/07/2003, Roma.
38) LEONE F. (2003) - Quando, nel 1349, crollarono chiese e monumenti. - Corriere della Sera 21/07/2003, Roma.
39) LEONE F. (2003) - Inondazioni e terremoti, i punti deboli del Lazio. - Corriere della Sera 11/11/2003, Roma.
40) LEONE F. (2004) - Piogge e rischi, vent'anni di memorie dal sottosuolo. - Corriere della Sera 18/10/2004, Roma.
41) LEONE F. (2005) - Una carta geologica per l'area romana. Corriere della Sera 10/10/2005, Roma.

SECONDA PARTE

Le opere e le loro interferenze con l'ambiente geologico

Innovazione tecnologica della Soles - Forlì nelle opere di fondazione in ambiente urbano

Francesco Alberti

Premessa

Le opere e le loro interferenze con l'ambiente geologico e con l'ecosistema cittadino

Con le Norme Tecniche per le Costruzioni pubblicate su S.O. n. 159 della G.U. n. 222 del 23 settembre 2005 il terreno, a conferma di ciò che la Geologia e la geotecnica ha ben definito, deve essere considerato uno degli elementi strutturali di un'opera d'arte al pari del ferro, del cemento armato, ecc. Pertanto si rende necessario e obbligatorio definire un modello geologico - tecnico del sottosuolo al fine di definire il comportamento del terreno a seguito del comportamento dell'opera.

Da ciò consegue come diventi assolutamente importante e rigoroso studiare e definire tutte le caratteristiche del terreno e come sia impegnativo operare nel sottosuolo con i lavori di scavo, di fondazioni ecc. senza alterare, direttamente o indirettamente, la natura, la struttura e l'assetto geologico esistenti relativamente all'elemento terreno.

Tra le opere nel sottosuolo i pali di fondazione sono gli elementi che più generano interferenze con "l'ambiente geologico" e con l'ecosistema cittadino

[^2]

Figura 1 - Schema del tubo guida inserito nella struttura di fondazione.
così come si possono trascinare elementi terrosi inquinati negli stati profondi.

Oggi si raggiungono, con certi tipi di pali, profondità superiori ai 70 metri per questo i suddetti fenomeni si possono ritrovare a profondità significative.

Il sottosuolo, interessato da pali di fondazione, che fa parte dell'ambiente geologico, può subire anche interferenze negative per l'esecuzione di pali che spesso sono invasivi secondo le caratteristiche del terreno interessato e le modalità esecutive.

Nel contesto di questa giornata dedicata alla "Geologia urbana nella Capitale", merita particolare attenzione l'esistenza di una interessante innovazione tecnologica che riguarda un particolare palo di fondazione, specifica-
"aria - acqua - suolo" perché sono immersi in esso spesso in modo traumatico con trivellazioni, battiture ecc. I pali, inoltre, non si vedono perché spariscono nel terreno, ma spesso durante l'esecuzione si sentono vibrazioni, si vedono decompressioni o compressioni all'interno, si vedono comparire acque del sottosuolo, si vedono instabilità di fori, si misurano quantità di terreno estratto superiori ai volumi teorici e si sentono onde d'urto sotto i piedi che corrono nelle varie stratificazioni ecc.

A volte con i pali di fondazione si mettono in comunicazione tra di loro falde acquifere che se inquinate provocano problemi ambientali non di poco conto,
mente studiato per ridurre in modo sensibile le interferenze delle opere di fondazione con l'ambiente geologico.

Si tratta del palo Soles un palo semplice ma intelligente che appartiene alla famiglia dei pali infissi senza estrazione di terreno che mantenendo le caratteristiche positive di questa categoria di pali annulla quegli aspetti negativi di applicabilità in ambienti urbani perché viene infisso senza percussione con un particolare sistema statico, silenzioso e senza vibrazioni .

Qual'è la tecnologia innovativa che permette tutto ciò? Un'impresa specializzata, la Soles di Forli, mettendo a frutto la propria cultura nel settore dell'oleo-
dinamica per avere un brevetto di costruzione di serbatoi pensili costruiti a terra e sollevati con speciali martinetti fino ad altezze di 50-60 metri, ha studiato e ingegnerizzato un'idea semplice: spingere staticamente un tubo di acciaio chiuso alla base da una punta allargata prendendo la reazione dai piedi ancorati nella struttura di fondazione vecchia o nuova. Il tubo durante la sua infissione nel terreno viene contornato da un betoncino messo in opera a pressione in modo da saturare lo spazio anulare generato dalla punta allargata del palo, questo calcestruzzo formerà la corteccia del palo proteggendo il tubo interno che a sua volta verrà riempito di calcestruzzo.

Un sistema di manometri consente di misurare metro per metro la portata limite alla punta del palo che quindi autodetermina la propria capacità portante durante l'infissione.

La pressione del betoncino potrà essere modulata a vari livelli impedendo quindi, ove richiesto, la comunicabilità delle falde e degli strati in terreni inquinati.

Da quanto sopra descritto si evince come le tecnologie Soles, innovative ed evolute, possano contribuire, nel pieno rispetto dell'ambiente e dell'ecosistema cittadino, allo sviluppo della cosiddetta

Figura 2 - Schema del palo finito.
"IV dimensione" nel contesto urbano per la realizzazione dei servizi e delle infrastrutture nel sottosuolo.

Pali di fondazione

Nel settore del consolidamento di edifici compromessi da problemi statici, con

Figure $3 a, 3 b, 3 c$ - Una delle caratteristiche è l'estrema compattezza e manovrabilità dell'attrezzatura d'infissione del palo Soles®. Nelle immagini sono riportate alcune fasi di consolidamento delle fondazioni di un condominio di 50 appartamenti mediante I'utilizzo dei pali Soles \circledR^{\circledR} nel centro storico di Roma operando solo dal piano interrato.
lesioni, dissesti, deformazioni, ecc. molto spesso le cause vanno ricercate nelle fondazioni e più propriamente nel terreno. Tra i vari sistemi di intervento sono spesso previsti pali di fondazione.

L'esecuzione di pali di fondazione in rapporto al tipo ed alle modalità di realizzazione può provocare un notevole disturbo e a volte un trauma, rispettivamente a:

- terreno;
- ambiente;
- strutture esistenti;
- persone;
- attività in corso.

Infatti per realizzare pali di fondazione generalmente si deve scavare, trivellare, battere, produrre fanghi e materiali di risulta, fare rumore e sporcare.

Il palo di fondazione che concilia le esigenze tra strutture - prestazioni, terreno - ambiente e disturbi è il palo infisso senza estrazione di terreno.

Questo palo affonda le sue radici nella storia, il primo palo di questo tipo impiegato dall'uomo è il palo in legno noto ed utilizzato nei secoli.

Venezia ne è un testimonianza.
Con il palo infisso in legno si otteneva un effetto di costipamento del terreno (passonatura) e si trasferivano i carchi in profondità. Ovviamente i diametri e le lunghezze erano limitate.

L'infissione avveniva dinamicamente per percussione.

Oggi, se non all'aperto, è difficile e pericoloso battere pali perché i martelli battipalo o i vibromagli mobilitano grandi energie con onde d'urto, vibrazioni e rumori.

Pertanto i pali battuti hanno un impiego limitato in vicinanza di strutture

esistenti e non possono essere impiegati per sottofondazioni.

In questi casi vengono vanificati gli effetti benefici dei pali infissi, cioè il costipamento del terreno, la restituzione in termini di portata dell'energia trasmessa per l'infissione, la mancanza di materiali di risulta, ecc.

Attualmente ai pali in legno infissi sono stati sostituiti pali in calcestruzzo e ferro, catalogabili secondo il sistema di infissione.

A) Pali infissi con sistemi dinamici

- pali battuti prefabbricati in cemento (tipo Scac, etc...);
- pali battuti gettati in opera con tuboforma recuperabile (tipo Franki - Delta - Trevi, etc...);
- pali battuti vibroestratti (tipo Vibrotrevi, etc...);
- pali vibroinfissi (tipo Vibropress, etc...);
- pali battuti con tubo forma a perde-

Figure 4a, 4b - Un'altra carretteristica è l'estrema pulizia e silenziosità dell'attrezzatura d'infissione del palo Soles B^{\circledR}, fattore che riduce il fastidio arrecato in zone altamente antropizzate.

Figure 5a - Esempi di tubo guida, 5b Tubo guida inserito nella platea prima del getto, 5c Scatola guida vincolata a travi in ferro per il collegamento con la struttura esistente.
re (tipo Lacor, etc...);

- pali battuti con tubo forma strutturale a perdere (tipo Multiton, etc...).

B) pali infissi con sistemi statici

- pali in elementi prefabbricati infissi con martinetti idraulici posizionati sotto strutture o fondazioni esistenti (tipo Mega);
- pali SOLES® ${ }^{\circledR}$ ad alta capacità portante - in elementi tubolari di acciaio strutturali gettati in opera ed infissi staticamente con attrezzature idrauliche.

Descrizione Palo Soles ${ }^{\circledR}$

Il Palo Soles ${ }^{\circledR}$ è un palo di fondazione ad alta capacità portante costituito da un tubo d'acciaio strutturale, infisso a pressione statica e gettato in opera. Appartiene, quindi, a quella categoria di pali infissi con sistemi statici.

Com'è noto ogni palo vuole il suo terreno ed ogni terreno cerca il suo palo. I pali infissi, per esempio, richiedono un terreno che si lasci infiggere, cioè un terreno fine e coesivo tipo argille, limi, sabbie. Questi sono, tra l'altro, i terreni più compressibili, spesso responsabili di cedimenti e dissesti.

Il Palo Soles ${ }^{\circledR}$ si autodetermina, poiché nella fase di infissione, comportandosi come una prova penetrometrica statica, va a cercare i punti di maggiore resistenza del terreno dove esprimere il meglio di se stesso, cioè la propria massima capacità portante.

Il Palo Soles ${ }^{\circledR}$ messo a punto e brevettato dalla SO.L.E.S. di Forli su invenzione e ingegnerizzazione dell'ing. Vincenzo Collina, nasce da un attento esame critico delle maggiori problematiche che emergono nell'esecuzione dei vari pali di fondazione generalmente impie-

Figure 6a, 6b, 6c - Per l'infissione dei Pali Soles vengono utilizzate attrezzature di varie dimensioni, a seconda della situazione in cui ci si trova ad operare. Nell'immagine 6 d - è riportato l'esempio di una putrella infissa orizzontalmente; 6e - Contemporanea esecuzione dei pali e delle strutture in elevazione.

Figura 7 - Esempio di paratie di contenimento tipo berlinese con infissione statica di profilati metallici.
gati, ciascuno dei quali pur nella propria validità applicativa, presenta punti critici che si riflettono a volte negativamente sulle strutture, sull'ambiente e sulle persone coinvolte nei lavori di consolidamento e recupero statico.

Fugura 8 - Esempio di precarica.

Superamento delle problematiche

Le problematiche che si incontrano per intervenire nel sottosuolo in occasione di consolidamenti statici in edifici generici ed in particolare in edifici storici sono:

- mancanza di spazio;
- accessi difficoltosi e a volte impossibili per attrezzature tradizionali, quali sonde, trivelle, ecc. che richiedono demolizioni per il loro passaggio e posizionamento, anche se di piccole dimensioni ma pur sempre pesanti e complesse;
- necessità di evitare colpi e vibrazioni;
- necessità di evitare rumori;
- difficoltà per asportazioni di materiali di risulta provenienti da scavi e trivellazioni, spesso misti ad acqua, fanghi, bentonite;
- difficoltà di approvvigionamento ed allontanamento di acqua per le perforazioni. Quantitativi considerevoli di acqua sono richiesti secondo le esigenze del terreno e le tecniche impiegate;
- difficoltà di occupazione di suolo pubblico quando si deve operare all'esterno, per le difficoltà esposte in precedenza;
- difficoltà di interruzione o limitazione delle attività all'interno od all'esterno degli edifici;
- necessità di interventi non invasivi e molto delicati per criticità delle strutture da risanare.

La SO.L.E.S. S.p.A. per superare gli aspetti critici evidenziati ha studiato ed ingegnerizzato un'idea semplice: quella di realizzare un palo di fondazione infisso

Figure 9 - Fasi di sollevamento di un fabbricato: 9a - Costruzione della platea in c.a., con inseriti i tubi guida, collegata alle fondazioni del fabbricato; $9 b$ - Inserimento dei Pali Soles $®$, in assenza di vibrazione e senza asportazione di terreno, fino al raggiungimento della profondità di progetto; 9c - Sollevamento del fabbricato inclinato mediante sistema computerizzato per il comando e il controllo, sia contemporaneo che singolo, dei martinetti ed il monitoraggio dell'edificio; 9d - Fabbricato riportato nell'assetto originario.
a pressione statica senza estrazione di terreno.

Il palo è costituito da un robusto tubo di acciaio (strutturale) con una punta allargata costituita da un fondello saldato di diametro superiore a quello del tubo, con funzione di chiusura e di svincolo dell'aderenza tubo terreno in fase di infissione, che avviene staticamente per mezzo di un'attrezzatura idraulica appositamente progettata e costruita.

Il tubo poi verrà riempito di calcestruzzo e contornato di betoncino come protezione da corrosione.

Il punto necessario di reazione alla spinta di infissione viene preso dalla struttura di fondazione, vecchia o nuova, dove viene precedentemente collocato e solidarizzato uno speciale "tubo guida".

Con la stessa tecnologia di infissione statica vengono realizzate:

paratie di contenimento tipo berlinese

Paratie di contenimento, scavi con tubi in acciaio o profilati metallici ad H .

In quest'ultimo caso nella struttura necessaria per prendere la reazione alla spinta - cordolo guida - vengono inserite scatole guida con tirafondi opportunamente costruite;

precarica

Per razionalizzare la distribuzione dei carichi sulle teste dei pali e per scontare i cedimenti alla punta, in modo da rendere omogeneo il comportamento della struttura derivante dalla sua interazione con la nuova fondazione ed il terreno, il palo Soles si presta ad operazioni di precarica, che può essere applicata direttamente con la stessa attrezzatura di infissione o successivamente con specifica metodologia;

sollevamenti

Sempre con sistemi idraulici applicati sulla testa dei pali Soles eseguiti, ma ancora non vincolati con la struttura di fondazione, si possono attivare operazioni di sollevamento di strutture o fabbricati, previo opportune preparazioni e meccanismi.

La Soles S.p.A. nel campo dei sollevamenti fa ricorso ad una lunga esperienza e cultura, derivante dalla costruzione di serbatoi pensili che costruiti a terra per la parte invaso, vengono poi sollevati e completati con una specifica tecnologia brevettata.

7\|

IV dimensione: possibilità nella capitale

Alessandro Focaracci

L'uomo ed il sotterraneo

Premessa

'utilizzo degli spazi in sotterraneo è diventato sempre più diffuso nelle civiltà industrializzate e cresce con il progredire della vita economica e sociale della nazione. E' noto a molti che, ogni anno, in Cina, vengono completati circa 1000 chilometri di tunnel stradali, ferroviari e metropolitani, quanti ne sono stati realizzati dalle nostre ferrovie in più di un secolo!

Nel nostro Paese nell'ultimo trentennio siamo passati da una fase in cui il ricorso al sotterraneo andava possibilmente evitato perché foriero di situazioni costruttivamente difficili se non impossibili (si pensi alle autostrade appenniniche della Cisa e della Bologna - Firenze che arrivano a quote fino a 700 metri sul livello del mare proprio per evitare lunghe e insidiose gallerie), ad una fase in cui, grazie al grande progresso di tecniche e tecnologie degli ultimi venti anni, l'opzione in sotterraneo è diventata una scelta opportuna che, in particolari situazioni di antropizzazione, è da

[^3]anteporre a qualsiasi altra scelta in superficie (la tratta AV/AC Bologna - Firenze, appena ultimata per le opere civili, corre per il 93% in galleria, ed è stata realizzata nei tempi programmati).

L'utilizzo del sottosuolo, nell'ultimo ventennio, si è posto prepotentemente alla ribalta internazionale quale argomento di studi scientifici e tecnici, sociali, economici e politici, tra di loro coordinati. Un ruolo importante viene svolto dalle associazioni che operano nel settore (PIARC, ITA/SIG, FASTIGI, ordini professionali, ecc.), per coordinare, sempre a livello internazionale, lo sviluppo delle tecniche costruttive, la ricerca e la sperimentazione nel campo della sicurezza sia in fase di costruzione che in fase di esercizio, la discussione sulle forme di appalto e di gestione contrattuale delle opere in sotterraneo e altro ancora.

L'utilizzo del sotterraneo nella storia dell'uomo

L'utilizzo del sotterraneo nella vita sociale ed economica delle civiltà è storia antica quanto è antica la storia delI'uomo. All'inizio venivano usate caverne naturali, per la protezione della gente, ma anche per usi civili in genere. Poi sono state affinate tecniche di scavo più o meno rudimentali (Fig. 1), per realizzare scavi con gallerie e caverne: basti pensare alle grandiose città sotterranee nella Cappadocia, agli acquedotti romani e, a Roma, alla fitta rete di catacombe.

I fattori che hanno indotto l'uomo ad utilizzare il sotterraneo, stabilendo anche degli insediamenti, sono molteplici: la caverna, artificiale o naturale che sia, non è immediatamente visibile, ma è facilmente accessibile, è sicura, protetta,

Figura 1 - Ricostruzione ideale della 'macchina' adoperata nell'escavo dell'asautore sotterraneo del Lago di Nemi, basata sull'analisi dei segni di lavoro riscontrati sulle pareti e sulla volta del cunicolo. A sinistra si ha una vista dall'alto, a destra in 'trasparenza' dalla parete destra della galleria. (da Castellani, Dragoni 1991, p.57, fig. 18).
isolata sia dal punto di vista acustico e che, soprattutto, termico. [1]

Tutti fattori questi che anche per l'uomo moderno hanno la loro validità, ma oggi, in quei contesti, comuni a molte parti del mondo moderno sviluppato e non, in cui si aggravano e si complicano per la superficie i problemi di congestione, di sicurezza, di affidabilità, di consumi energetici, l'utilizzo del sotterraneo per i servizi consente di raggiungere una serie di benefici economici e sociali tali da giustificare maggiori investimenti iniziali per la realizzazione delle opere.

L'insediamento in sotterraneo consente, infatti, di ottenere:

- la protezione verso gli eccessi climatici, per cui fornisce un valido riparo agli stoccaggi, ad installazioni strategiche, per la protezione civile;
- l'isolamento acustico e termico, che si traduce in risparmio energetico, infatti il terreno per la sua bassa conducibilità termica non trasmette le variazioni giornaliere e stagionali delle temperature già a pochi metri di profondità;
- la riduzione di manutenzione rispetto agli stessi impianti all'esterno;
- una maggior sicurezza d'esercizio e all'intrusione da e verso l'esterno.

Ma soprattutto, il risparmio di superficie libera da destinare alle attività dell'uomo all'aria aperta, unitamente ai fattori sopraelencati, consente la salvaguardia ambientale dei territori più antropizzati.

Lo spazio in sotterraneo diviene, quindi, una risorsa naturale che può consentire di risolvere importanti problematiche della vita associata connesse all'urbanizzazione eccessiva, all'affollamento delle aree urbane ed al
traffico congestionato, alla richiesta di aree di parcheggio e di volumi utili per l'immagazzinamento ed il deposito di prodotti e per la logistica in genere.

Per la migliore utilizzazione del sottosuolo a vantaggio della qualità della vita in superficie, occorre che la classe politica, sia essa autorità di governo o amministrazione locale, prenda piena coscienza del carattere innovativo e degli enormi vantaggi per la collettività che l'utilizzo in larga scala del sottosuolo comporta.

Occorre, in altre parole, estendere la percezione di utilizzo del sottosuolo nella gestione del territorio, che spesso è limitata alla percezione immediata di alcuni casi, quali metropolitane e parcheggi.

Occorre inoltre rimuovere il convincimento diffuso che i beni archeologici, che spesso affiorano nella costruzione delle opere in sotterraneo, siano un ostacolo all'utilizzo del sottosuolo, per convincersi che la realizzazione dell'opera può rappresentare il momento propizio per far tornare alla luce reperti con la loro carica di testimonianza storica.

Occorre, infine, fugare il timore di riflessi, non controllabili, delle incertezze sulla natura del sottosuolo sui tempi e costi di realizzazione delle opere: le opere in sotterraneo sono oramai capaci di competere con analoghe opere in superficie, poiché le tecnologie disponibili consentono di affrontare situazioni geologiche di ogni tipo ed i criteri di gestione progettuale e costruttiva permettono di garantire il rispetto dei tempi e dei costi di realizzazione entro margini predefiniti in sede progettuale. [2]

L'opzione in sotterraneo per un miglior rispetto dell'ambiente

Premessa

Per comprendere l'importanza dell'opzione in sotterraneo, non solo per togliere dalla superficie attività od occupazioni liberando spazi fruibili dall'uomo per il suo benessere, ma anche nei riguardi dell'ambiente in cui le opere sono inserite, occorre innanzi tutto fare riferimento e richiamare le caratteristiche che queste opere hanno nei riguardi delle problematiche ambientali, sia in fase di progettazione, che in quella di realizzazione che in fase d'esercizio.

La fase di progettazione

La fase di progettazione è quella in cui vengono fatte le scelte caratterizzantil l'opera nel suo complesso e quindi in cui si determina l'inserimento ambientale dell'infrastruttura, definendo tipologie delle opere principali, cantierizzazioni, mitigazioni e valorizzazioni ambientali. E^{\prime} in questa fase che si compiono quindi le scelte relative a:

- l'inserimento dell'opera nell'ambiente naturale, che avviene scegliendo le caratteristiche geometriche dei tracciati e tipologie di opere che garantiscono il minor impatto;
- l'inserimento nell'ambiente antropico, che impone scelte molto severe sulle caratteristiche plano-altimetriche del tracciato, per minimizzare gli impatti in fase di costruzione ed in esercizio. In questa fase occorre anche un'attenta analisi delle conseguenze indotte dalle singole modifiche ambientali che l'opera comporta;
- le aree suscettibili di miglioramento sia attraverso interventi di mitigazione mirati, sia attraverso interventi di valorizzazione del territorio.

La fase di costruzione

In fase di costruzione è fondamentale un accurato progetto dei cantieri e delle tecniche costruttive. In questa fase occorre fare riferimento ad alcuni aspetti fondamentali:

- i criteri di riduzione del rumore e delle polveri. Si tratta d'interventi che stanno entrando nell'uso comune nella realizzazione di grandi opere, i lavori, infatti, insistono per anni su un territorio, creando disagi tanto più contenuti quanto meglio sono risolte queste problematiche: capannoni insonorizzati dove alloggiare le apparecchiature più rumorose, filtri all'uscita dei ventilatori, stazioni di lavaggio dei mezzi che accedono in galleria, sono solo alcuni esempi di come si può ridurre il disagio nella fase di realizzazione, "mascherando" I'opera, che così viene realizzata senza che se ne abbia la completa percezione;
- la localizzazione degli impianti e delle installazioni di cantiere, che possono trovare ubicazione in luoghi scarsamente sfruttati e non eccessivamente visibili;
- scelta delle tipologie, dei metodi e delle fasi costruttive, mirate ad un maggior rispetto dell'ambiente, alla conservazione delle falde idriche, al controllo dei
cedimenti in superficie, alla riduzione delle vibrazioni e, in genere, al rispetto degli equilibri naturali preesistenti;
- monitoraggio ambientale, riferito a tutti quei parametri che possono portare a modificazioni temporanee o permanenti dell'ambiente. Ai parametri ed alle metodiche del monitoraggio vanno

Figura 2 - Incidenza delle opere in sotterraneo sul bilancio ambientale.
sempre associate delle soglie d'attenzione e di allarme ed i criteri d'intervento predefiniti in rapporto ad ogni situazione ipotizzata.

Da questo punto di vista si può affermare che le opere in sotterraneo più di ogni altra tipologia di opere garantiscono il bilancio ambientale in fase di costruzione. I prodotti provenienti dalle lavorazioni prima di essere reimmessi nell'ambiente vengono depurati, mentre i materiali da costruzione possono essere selezionati tra quelli non inquinanti ed ecologici (Fig. 2).

La fase di esercizio

La fase di esercizio deve essere necessariamente preceduta dalla realizza-
zione degli interventi di mitigazione so-cio-ambientale. Tali interventi dovranno considerare prioritariamente alcuni aspetti:

- il livello d'inserimento dell'infrastruttura nell'ambiente: in particolare per quelle nastriformi (strade, autostrade, ferrovie) accorre valutare la geometria e la tipologia delle opere in rapporto all'orografia del territorio. Si tende sempre a preferire interventi localizzati e differenziati lungo l'infrastruttura, invece che seguire l'opera nel suo sviluppo con barriere vegetali che tendono ad esaltare |"'artificialità" dell'intervento;
- il controllo del rumore e dei gas di scarico, che nel caso di opere in sotterraneo può essere risolto in maniera efficace come non è possibile con altre
tipologie di opere a cielo aperto;
- la valorizzazione ambientale che si ottiene andando a recuperare zone di territorio degradate limitrofe all'infrastruttura e riqualificandole con adeguati interventi.

Tutti gli interventi di mitigazione e di monitoraggio ambientali, sia della fase realizzativa sia in esercizio, devono essere previsti in progetto e chiaramente riportati in appalto e non possono essere scorporati dall'opera principale.

L'utilizzo del sottosuolo in area urbana

Premessa

In area urbana lo spazio in sotterraneo rappresenta, per quanto analizzato precedentemente, una risorsa naturale che può consentire di risolvere importanti problematiche della vita associata connesse all'urbanizzazione eccessiva, all'affollamento del tessuto urbano ed al traffico congestionato, alla richiesta di aree di parcheggio.

Un concetto da tener ben presente, se si vogliono rimuovere alcune singolarità tipiche del nostro Paese e della sua Ca-
pitale in particolare, che ne limitano sensibilmente lo sviluppo socio-economico.

Nelle grandi aggregazioni urbane della penisola si concentra oltre il 45% delle attività industriali ed oltre I' 85% delle attività del terziario. Inoltre nelle grandi aggregazioni urbane si concentra oltre il 55% della popolazione, contro il 27% della Germania ed il 22% della Francia (Fig. 3).

Nel contempo tra i Paesi dell'UE l'Italia si colloca all'ultimo posto per quanto concerne la dotazione di reti di trasporto a guida vincolata. Il trasporto pubblico locale diviene così, per la sua stessa inefficienza, una crescente voce di diseconomie e di debito pubblico.

Questa carenza di servizi influisce pesantemente sulle attività del terziario e soprattutto genera costi energetici patologici, inquinamento atmosferico, tassi d'incidentalità elevatissimi. Il costo della congestione nelle grandi realtà urbane ha superato nel 2000 i 7 miliardi di euro e solo a Roma 0.8 miliardi di euro.

Per le grandi città e non solo, del nostro Paese e per la Capitale in particolare occorre pensare a rimuovere preconcetti e limitazioni ideologiche ed adottare l'opzione in sotterraneo per risolvere i problemi sopra descritti, che da cronici

Figura 3 - Distribuzione della popolazione residente in grandi aggregazioni urbane in alcuni Paesi dell'UE.
potrebbero divenire devastanti sul piano dello sviluppo, della competitività e della qualità della vita. Il maggior utilizzo del sotterraneo a Roma, specie a scopo infrastrutturale, è l'unica opzione che può permettere il miglior utilizzo della superficie, a tutto vantaggio di chi la vive.

Il sottosuolo per il trasporto pubblico locale

Negli ultimi anni grazie alla legge obiettivo si sono approvati e finanziati progetti di metropolitane senza precedenti, che consentiranno di dotare le maggiori città italiane di sistemi di trasporto pubblico, prevalentemente in sotterraneo che, integrati con parcheggi terminali e scambiatori, consentirà da un lato di migliorare il traffico in superficie con l'eliminazione di linee di autobus, dall'altro ridurre l'incidenza del traffico privato prevalentemente pendolare. Si pensi che in una grande città come Roma alle 800-900 mila auto dei residenti si sommano 300-500 mila auto di pendolari, quindi un effetto importante sul traffico cittadino può essere ottenuto bloccando il traffico veicolare in periferia stimolando all'uso del mezzo pubblico. Bologna, Parma, Monza, Palermo, Catania avranno nei prossimi anni nuove linee metropolitane in sotterraneo (almeno per la tratta urbana), mentre sono state potenziate le linee sotterranee di Milano, Roma, Torino, Genova, Napoli. Altre città hanno optato per linee tranviarie di superficie: è inevitabile pensare ad una occasione persa per la valorizzazione del sottosuolo di queste città, che avrebbero potuto liberare la superficie da traffico, rumore, pericoli, connessi ad un traffico promiscuo di superficie pubblico-privato. Nel-
la Capitale le nuove linee in costruzione sono inoltre dotate di caratteristiche tecnologiche d'avanguardia: sono automatiche, areate adeguatamente, gestite da sistemi di sicurezza che garantiscono frequenze molto elevate.

I dati del Conto Nazionale dei Trasporti sono molto indicativi dell'attività di questo governo (N.d.r. Governo BerIusconi - XIV Legislatura) dal 2001: in quell'anno il patrimonio di reti metropolitane che interessava solo quattro città metropolitane, consisteva in 121 km di linee. Ad oggi, novembre 2005, le opere dedicate al trasporto rapido di massa sono diventate una specifica categoria d'intervento programmatico superando così le logiche territoriali circoscritte alle aree metropolitane per diventare una priorità nazionale. Su 15.300 milioni di euro d'interventi programmati in aree urbane che interessano anche aree urbane non metropolitane ma ugualmente soggette a domande di punta, questo governo ha finora deliberato e stanziato ben 6.675 milioni di euro, cioè 121 km di nuove linee. Dal 2001 ad oggi, cioè, questo governo ha raddoppiato il patrimonio esistente di metropolitane portandolo a 242 km e ne ha diffuso l'utilizzo in aree anche non metropolitane. Gli impatti sulla riduzione del traffico e dei costi da congestionamento, stimati in 12 milioni di euro al giorno per la sola città di Roma, rappresentano solo in minima parte i benefici attesi dall'investimento in sotterraneo.

Ad esempio Roma sta attuando un importante progetto di potenziamento ed ammodernamento della rete metropolitana della città, che comprende la realizzazione delle linee C e B1, la progettazione della linea D e dei prolungamenti
delle linee esistenti, nonché i lavori di ammodernamento della linea A. Con questo programma d'interventi verrà più che raddoppiata l'attuale rete.

La linea C è lunga 25 km con 30 stazioni, parte dalla zona Clodio/Mazzini e si snoda verso sud-est sottopassando la zona centrale fino a S. Giovanni, prosegue in zona semiperiferica fino a seguire la via Casilina e si porta in superficie nella zona periferica oltre il Grande Raccordo Anulare, collocandosi sul tracciato della ferrovia Termini-Pantano, per terminare al limite orientale del Comune di Roma. Il costo dell'investimento è di circa 3.047 milioni di euro, di cui il 70% a carico del10 Stato. La capacità di trasporto offerto dall'intera linea sarà di 24.000 passeggeri l'ora per senso di marcia con un sistema di automazione integrale senza macchinista a bordo. I lavori inizieranno nella primavera del 2006.

La linea $B 1$ è lunga $3,9 \mathrm{~km}$ con quattro nuove stazioni, parte dalla diramazione della linea B a piazza Bologna e termina a piazza Conca d'Oro. La capacità di trasporto sarà di di 24.000 passeggeri l'ora per senso di marcia. La spesa complessiva prevista è di 483 milioni di euro, di cui il 48% a carico dello Stato. I lavori sono avviati e dovranno terminare nel 2010.

Il Nuovo Piano Regolatore Generale di Roma prevede il completamento della rete delle metropolitane con la realizzazione della linea D: 22 km con 24 stazioni, che collegheranno il quartiere Talenti a nord, con l'EUR a sud passando dal Salario, Largo Argentina e Trastevere. La linea sarà utilizzata da circa 400.000 passeggeri/giorno.

Al termine del processo di potenziamento del sistema delle metropolitane di

Roma i chilometri e le stazioni in esercizio saranno più del doppio rispetto alla situazione attuale. Le residenze di 820.000 cittadini e i posti di lavoro di 560.000 addetti saranno situati entro 10 minuti di percorrenza a piedi dalla stazione più vicina. Gli spostamenti giornalieri serviti dall'intero sistema metro passeranno dagli attuali 800.000 circa a 1.700 .000 (fonte Roma Metropolitane S.p.A.).

Le possibilità nella Capitale

Nello stato in cui versa il traffico nella Capitale potenziare la rete metropolitana è necessario ma non sufficiente, occorre prevedere anche il potenziamento della rete viabilistica, ormai del tutto inadeguata.

Per Roma, più di ogni città italiana, è importante che i decisori politici ed i legislatori prendano coscienza degli enormi vantaggi per la collettività che il massiccio utilizzo del sottosuolo può comportare per la risoluzione delle croniche problematiche connesse al traffico viabilistico ed al trasporto pubblico locale.

In questo ambito è fondamentale riuscire ad estendere, tra gli amministratori, la percezione di utilizzo del sottosuolo, ben otre quella immediata delle metropolitane, per la risoluzione delle problematiche connesse all'assetto urbano del territorio.

Riguardo ai problemi d'intercettazione di reperti archeologici occorre adottare un nuovo approccio. Il potente strato archeologico (fino a $10-15 \mathrm{~m}$ di spessore), presente diffusamente in una vasta area della Capitale, ha reso impensabile per anni la realizzazione di opere in sotterraneo, fondamentali come le nuove linee metropolitane. Occorre oggi pensare che la realizzazione dell'opera in sot-

Figura 4 - Fasi della tecnica dell'"Arco cellulare" impiegata a Milano per la realizzazione di una stazione del Passante ferroviario di circa 30 metri di lunghezza.
terraneo rappresenta la grande occasione di far tornare alla luce reperti che testimoniano la loro storia. Sempre più spesso le nuove metropolitane divengono occasione di mettere a disposizione di cittadini e studiosi reperti di grande bellezza ed interesse culturale, di cui neanche si immaginava l'esistenza.

In questa spinta decisa verso l'utilizzo del sottosuolo, i decisori politici devono anche sapere che negli ultimi venti anni il progresso tecnico e tecnologico nella realizzazione di opere in sotterraneo è stato enorme e l'Italia, in questo processo di sviluppo, è stata all'avanguardia e di esempio in tutto il mondo. Tecniche come I'"arco cellulare" [3], impiegato a Milano per la realizzazione di una stazione del Passante ferroviario di circa 30 m di grandezza (Fig. 4); della "volta attiva" [4], già impiegata a Roma per la realizzazione di una galleria profonda del pro-
lungamento della linea A della metropolitana (Fig. 5); le tecniche di monitoraggio, di previsione e di controllo dei cedimenti mediante opportuni consolidamenti del terreno hanno ormai superato qualsiasi messa a punto e sono pronte per applicazioni massicce.

Con queste tecniche si possono realizzare grandi cavità sotterranee, superficiali o profonde, in cui collocare parcheggi, servizi, stoccaggi ed altre attività per liberare la superficie per la vivibilità quotidiana dell'uomo alla luce del sole.

La morfologia del territorio capitolino, caratterizzato da colline tufacee, che presentano un ottimo comportamento allo scavo, incise con andamento pressoché radiale verso l'asta del Tevere, consente di ricavare attacchi naturali di gallerie e caverne di svariate forme e dimensioni. All'interno delle gallerie possono essere collocati tratti di strade (vedi il nuovo

Figura 5 - Tecnica della "Volta attiva" impiegata a Roma per realizzare una galleria profonda del prolungamento della linea A della metropolitana.
tratto dell""Olimpica" verso Pineta Sacchetti) che possono connettere zone strategiche superficie/sotterraneo (quali parcheggi limitrofi a stazioni di metropolitana), consentendo una migliore penetrazione del traffico cittadino verso il centro, con parcheggio in spazi sotterranei attrezzati, possibilmente collegati alle linee metropolitane.

I vantaggi di un tale programma di valorizzazione del sottosuolo sono intuitivamente immediati:

- si accorciano i tempi di percorrenza;
- si riduce il traffico di superficie, spesso non sviluppato su un itinerario origine/destinazione, ma indotto alla ricerca spasmodica di uno spazio utile per la sosta (consentita o non);
- si riduce il tasso d'inquinamento, anche per la possibilità di filtrare i gas
di scarico prodotti in galleria dai mezzi circolanti.

Uno studio approfondito sull'utilizzo del sottosuolo romano, mirato alle esigenze viabilistiche potrebbe guidare alI'individuazione di soluzioni strategiche di alto valore urbanistico.

Dal punto di vista finanziario le soluzioni prospettate bene si adattano a processi di finanza creativa, che possono ridurre sensibilmente l'impegno pubblico (ad esempio il tratto di strada che conduce al parcheggio può essere in parte finanziato con gli introiti del parcheggio scambiatore).

A queste soluzioni più rilevanti, andrebbero associate altre di minor rilievo, ma comunque di grande valenza dal punto di vista della fluidificazione del traffico. Che cosa sarebbe oggi la zona tra il

Piazzale Flaminio ed il Policlinico senza il "muro torto", con i suoi frequenti sottopassi collocati in corrispondenza di cruciali nodi viabilistici?

Se proviamo ad estendere questa tipologia realizzativa, che prevede l'uso del sotterraneo, (particolarmente lungimirante, ma unica a Roma) ad altri nodi viabilistici caratterizzati dalla confluenza di più arterie che non trovano un adeguato sbocco, si può facilmente capire che l'effetto sulla fluidificazione del traffico può essere decisivo, con ripercussioni benefiche su ampie zone limitrofe al "nodo".

L'opzione in sotterraneo in questo caso può consistere nella realizzazione dalla superficie di strutture scatolari con funzione di sottopassi per evitare incroci a raso. In questo caso si possono adottare tipologie di opere realizzabili per fasi, al fine di ridurre al minimo l'ingombro dei cantieri nella fase di realizzazione e quindi l'interferenza con la viabilità esistente (Fig. 6).

Nei casi più complessi dal punto di vista viabilistico, possono essere realizzate, al piano campagna originario, rotatorie per la distribuzione del traffico di superficie.

Conclusioni

Nel nostro Paese, così carico di storia, ma, anche per questo, fortemente antropizzato, caratterizzato da un territorio a morfologia andulata, I'utilizzo del sottosuolo per allogarvi servizi ed infrastrutture di trasporto, non è soltanto una scelta opportuna ma ormai necessaria. Le città medie e grandi sono al collasso cosi come molte arterie realizzate alcuni decenni or sono, il costo della congestione è divenuto intollerabile e paralizza l'e-
conomia, minando la competitività del Paese. Occorrono scelte importanti, di alto valore strategico, che, oltre alle infrastrutture di preminente interesse nazionale inquadrate nella legge obiettivo, riguardino anche le aree urbane. Roma in particolare, deve sviluppare un piano complessivo che parta dal potenziamento delle linee metropolitane in atto e che consideri un nuovo riassetto viabilistico che comprenda complete arterie di penetrazione o scolmatori, connesse a parcheggi scambiatori e attraversamenti in sotterraneo per risolvere caotiche intersezioni a raso.

Il grande progresso tecnologico di questi ultimi anni, nel campo delle opere

Figura 6 - Tipologia di opera in sotterraneo realizzabile per fasi al fine di limitare gli effetti negativi derivanti dall'ingombro di cantieri sulla viabilità esistente in superficie (strutture scatolari con funzioni di sottopasso per evitare incroci a raso).
in sotterraneo, impone di approcciare il tema dell'utilizzo del sottosuolo in maniera nuova, per esplorare orizzonti prima impensabili.

Solo con idee ed un'alta capacità di programmazione, che miri a valorizzare il sottosuolo, si possono risolvere i gravi problemi patologici che affliggono le nostre città.

Riferimenti bibliografici

1) AA. VV. (1998)- Lasciamo all'Uomo la luce del sole Sprofondiamo i servizi - (Atti del

Convegno - Milano, 7/8 novembre 1988).
2) FOCARACCI. A.(2005) La gestione progettuale e costruttiva delle gallerie, Gallerie e Grandi Opere Sotterranee ($n^{\circ} 67$ agosto 2005)
3) LUNARDI P. (1989) L'empoi de microtunnels pour la realisation d'ouvrages souterrains de grande portée: l'arc cellulaire, Congresso " Tunnel and Water " - Madrid, Spagna, Luglio 1989.
4) LUNARDI P., FOCARACCI A., MERLO S., (1997) Il pretaglio meccanico per la costruzione della volta di $21,5 \mathrm{~m}$ di luce della stazione "Baldo degli Ubaldi", Gallerie e Grandi Opere Sotterranee ($n^{\circ} 7$ novembre 1997).

La nuova linea della Metropolitana di Roma La Linea B1

Andrea Sciotti

Premessa

Nell'ambito dei diversi procedimenti attuativi nel campo delle metropolitane che il Comune di Roma ha affidato alla società Roma Metropolitane S.r.l., è attualmente in fase di realizzazione la nuova diramazione della linea B , la così nominata "Linea B 1 ", che dalla esistente stazione Bologna devia verso i quartieri Africano e Montesacro, lungo la direttrice viale XXI Aprile, piazza Annibaliano, viale Eritrea, viale Libia, via delle Valli, fino ad intestarsi, al momento, a piazza Conca d'Oro. E' infatti già previsto, ed in fase di studio, il futuro prolungamento fino al Grande Raccordo Anulare.

Con un procedimento di appalto integrato il Comune di Roma ha affidato la progettazione esecutiva e la realizzazione dell'opera ad un'ATI tra il Consorzio Risalto (capogruppo e mandataria), Maire Engineering S.p.a, ICOP S.p.a e altre (mandanti), in virtù

[^4]dell'offerta economicamente più vantaggiosa formulata. L'importo dell'appalto è di circa 353 milioni di euro, con previsione di ultimazione lavori entro agosto 2010 (54 mesi di lavori e 6 mesi di prove funzionaii). Da Novembre 2004 a Luglio 2005 si è protratta la fase di progettazione esecutiva a cura della Maire Engineering (progettista incaricato dall'ATI). Dal mese di ottobre 2005 sono in corso le prime attività sul campo afferenti i lavori veri e propri. Su tale appalto la società Roma Metropolitane S.r.l., soggetta a direzione e coordinamento da parte del Comune di Roma, esercita le funzioni di gestione del procedimento e di Direzione Lavori.

Nella presente nota si trattano alcuni aspetti, peculiari sia della fase progettuale che di quella realizzativa, con riferimento all'inserimento di una tale opera all'interno del contesto geologico e urbano del quadrante cittadino interessato, garantendo una generale "idoneità territoriale" dell'opera, con l'adozione di una serie di interventi atti a mitigare i rischi individuati.

In particolare, dopo aver descritto brevemente le caratteristiche dell'opera, si riepilogheranno le valutazioni condotte riguardo la pericolosità e la vulnerabilità del territorio e la scelta degli adeguati interventi di mitigazione. A seguire verranno descritte le indagini condotte in merito agli aspetti geologici e idrogeologici, e le soluzioni costruttive e tecnologiche individuate.

Caratteristiche dell'opera

Si tratta di una diramazione dell'esistente linea B , della lunghezza complessiva di circa 4 km , con 4 nuove stazioni: Nomentana, Annibaliano, Gondar e Conca d'Oro (vedi Fig. 1). La stazione No-
mentana è ubicata in corrispondenza del tratto terminale di viale XXI Aprile verso la via Nomentana. La stazione Annibaliano è posizionata al centro del parcheggio attualmente esistente nella omonima piazza. La stazione Gondar è ubicata su viale Libia, nel tratto terminale verso piazza Gondar e l'íncrocio con viale Somalia e viale Etiopia. La stazione Conca d'Oro, terminale attuale della linea B1, è collocata in corrispondenza dell'omonima piazza, una volta attraversato il fiume Aniene.

La zona urbana interessata rappresenta un bacino di utenza significativamente esteso in considerazione della intensa edificazione e urbanizzazione che hanno interessato l'area. Allo stesso tempo tale caratteristica richiede necessariamente una forte attenzione al rispetto di tali pre-esistenze, sia in fase di esecuzione dei lavori (cedimenti, rumori,) che a opera ultimata e esercizio ferroviario avviato (vibrazioni).

Si deve inoltre considerare che, dal punto di vista geologico-geotecnico, I'allineamento del tracciato, dettato dalla necessità di seguire per quanto possibile le necessità di utenza e le direttrici viarie principali già esistenti, porta ad interessare alcuni dei terreni a peggiori caratteristiche del sottosuolo di Roma (Paleotevere, Alluvioni recenti del fiume Aniene, riporti). Il substrato di tali formazioni, non interessato dall'opera, è costituito dalle argille limose e limi argillosi grigio-azzurri di ambiente marino, di età pliocenica (Argille azzurre Vaticane).

Anche la profondità della linea, e quindi delle stazioni, è dettata da un compromesso tra la necessità tecnica di ridurre al minimo i potenziali disturbi indotti in superficie e sulle pre-esistenze, e
la necessità gestionale di non realizzare stazioni e accessi alla linea troppo profondi e quindi di scarsa ricettività. In particolare, partendo dal punto di bivio della stazione Bologna, dove la profondità del piano ferro è dettata da quella dell'attuale linea B (12 m. minimo), il tracciato si sviluppa plano-atimetricamente fino a raggiungere i circa $35-40 \mathrm{~m}$ di profondità in corrispondenza del sot-to-attraversamento di via Nomentana (alto morfologico). Le profondità diminuiscono poi leggermente in corrispondenza della stazione Annibaliano (circa 20 m . minimo) per poi aumentare fino ai 25 m . minimi riscontrabili nella stazione Gondar, propedeutici all'ulteriore approfondimento in corrispondenza del sot-to-attraversamento del fiume Aniene (circa 40 m al di sotto della quota degli argini, e quindi circa 20 m . sotto l'alveo attuale). In corrispondenza della stazione Conca d'Oro la linea risale fino ad una
profondità di circa 20 m . minimi dal piano campagna attuale.

Vulnerabilita' e idoneita' territoriale

La realizzazione di un'opera interrata di tali dimensioni in ambito urbano richiede necessariamente un'attenta valutazione della vulnerabilità dell'ambito territoriale interessato e delle modalità esecutive che garantiscano l'idoneità di quanto deve essere realizzato nei confronti del territorio.

Tali valutazioni sono state condotte qualitativamente nelle fasi progettuali di impostazione dell'opera e successivamente affinate in termini quantitivi nelle fasi di sviluppo esecutivo del progetto. I risultati conclusivi mostrano, nei confronti dei rischi costruttivi legati alla realizzazione delle opere in questione, una sostanziale idoneità territoriale in

Figura 1 - Planimetria Linea B1.
relazione alle opere da realizzare ed alle metodologie costruttive prescritte, in virtù comunque di interventi e prescrizioni atti a mitigare i suddetti rischi.

Una visione generale, seppur qualitativa, delle valutazioni condotte è fornita da due elaborati allegati al progetto: la "Carta della pericolosità e vulnerabilità" e la "Carta della idoneità territoriale". Tali due carte riassumono schematicamente il lavoro svolto e le conclusioni raggiunte, nella fase preliminare di impostazione dell'attività di progettazione (e quindi di "risk management"), nella quale sono state qualitativamente analizzati il contesto urbano e geotecnico in cui si inserisce l'opera, le problematiche tecniche ed operative legate alla realizzazione delle opere, gli strumenti progettuali disponibili in termini di metodologie costruttive e soluzioni tecnologiche, e sempre qualitativamente individuati gli interventi di mitigazione necessari per

l'idoneità territoriale.

Nel primo dei due elaborati sono riepilogati i fattori di pericolosità legati alla realizzazione delle opere previste, individuati e definiti a livello generale. In particolare: coperture in base alla profondità della singola opera (galleria di linea, stazione), litologia e caratteristiche tecniche dei terreni, interferenza con i livelli acquiferi, interferenza con cavità, densità abitativa. E' inoltre delimitata la fascia di possibile influenza tra le opere da realizzare ed il contesto urbano, a cavallo dell'asse del tracciato delle gallerie di linea.

Nella seconda carta (Figg. 2 e 3) sono invece riportate le conclusioni progettuali qualitative, alle quali si è giunti sulla base delle analisi degli elementi raccolti. In conclusione, risultano necessari idonei interventi di mitigazione (consi-
stenti in specifiche soluzioni progettuali e adeguati accorgimenti costruttivi) al fine di garantire la realizzazione dell'opera nel rispetto del territorio e delle pre-esistenze. Tali interventi sono i seguenti: scavo delle gallerie di linea con TBM; applicazione di metodologie costruttive speciali per la realizzazione delle Stazioni e delle discenderie; scavo in condizioni di idrostatismo, sia per i pozzi che per gli scavi a foro cieco; opere di presidio preventive a protezione delle pre-esistenze; monitoraggio in corso d'opera.

Nei seguenti paragrafi si descriveranno dapprima le indagini ed analisi effettuate per acquisire la necessaria conoscenza del territorio; successivamente si descriveranno le soluzioni progettuali e costruttive adottate per la realizzazione delle opere (interventi di mitigazione).

Indagini e caratterizzazioni

Geologia

L'importanza attribuita alla conoscenza del sottosuolo interessato direttamente o indirettamente dalla realizzazione dell'opera in questione, è testimoniata dalla mole di indagini effettuate nel corso dello sviluppo della progettazione. Tale attività di indagine si è articolata in differenti campagne di indagini, a partire dagli anni 1971-2 relativa alla redazione del progetto di massima da parte dell'allora STEFER, e per finire in ordine cronologico con quella eseguita dall'Appaltatore nel periodo Dicembre 2004Agosto 2005. Le indagini e gli studi eseguiti sono stati rivolti a:

- definire la situazione stratigrafica del sottosuolo;
- caratterizzare con prove in sito i terreni attraversati;
- prelevare campioni per determinare con prove di laboratorio le proprietà fisi-co-meccaniche e le principali caratteristiche in termini di deformabilità e resistenza dei terreni interessati dall'opera;
- individuare la quota della superficie piezometrica della falda idrica.

Sono stati effettuati sondaggi geognostici a carotaggio continuo con prelievo di campioni e esecuzione di prove in sito di tipo SPT, pressiometriche Menard, permeabilità Lefranc; verticali penetrometriche statiche (CPT) e dinamiche (SPT); prove di laboratorio sui campioni indisturbati prelevati; stendimenti geofisici di superficie; prove geofisiche in foro, tipo down-hole e cross-hole; misure del livello di falda mediante piezometri a tubo aperto o attrezzati con celle di Casagrande. In totale sono stati realizzati: circa 185 sondaggi; circa 50 prove pressiometriche; circa 140 prove penetrometriche dinamiche tipo SPT; circa 45 prove penetrometriche statiche tipo CPT; circa 40 prove di permeabilità tipo Lefranc; prelievo di circa 240 campioni per prove di laboratorio; allestimento di circa 104 piezometri.

La scelta dell'ubicazione di tutte le indagini geognostiche eseguite dal 1972 ad oggi è stata effettuata tenendo sempre presenti le caratteristiche dell'opera e le conoscenze geologiche e geotecniche già disponibili, al fine di chiarire situazioni e/o settori meno conosciuti o comunque interessati da opere civili di particolare importanza (ad es. corpi stazione).

In particolare, per quanto riguarda la distribuzione dei 185 sondaggi: 79 sondaggi sono stati distribuiti lungo le tratte in galleria, con profondità medie di $35-40 \mathrm{~m}$ (su circa $2,5 \mathrm{~km}$ di linea netta in galleria, risulta una media di circa 1
sondaggio ogni 30 m); 56 sondaggi sono stati ubicati al fine di indagare il volume di terreno che interessa i corpi stazione (su 4 stazioni, risulta una media di 14 sondaggi per area di stazione); 50 sondaggi a distruzione di nucleo sono stati realizzati per verificare la presenza di possibili o probabili cavità nella zona tra la stazione Bologna e la stazione Nomentana in quanto unico settore ritenuto a rischio specifico per le sue caratteristiche geologiche; tali sondaggi sono stati spinti mediamente ad una profondità di 15-20 m. L'allestimento a piezometro di un gran numero di sondaggi, le prove effettuate in sito e le numerose prove di laboratorio eseguite sui 236 campioni prelevati hanno permesso di caratterizzare geotecnicamente i terreni interessati dall'opera, ricavando parametri come angolo di attrito, resistenza al taglio, coesione, ecc.

Particolare attenzione è stata posta nella ricerca bibliografica di documenti e dati storici. Il reperimento di alcune carte storiche antecedenti l'urbanizzazione della zona, ha permesso di individuare l'estensione e la forma della Valle del Fosso di S. Agnese e dei suoi affluenti (in particolare di quello che confluiva nel Fosso di S. Agnese in corrispondenza di P.zza Gondar), costituendo un notevole ausilio nella ricostruzione dei profili e delle sezioni geologiche. Altre planimetrie di epoca antecedente e posteriore hanno integrato e verificato le ricostruzioni sopra citate. Tutte le informazioni fornite dai vecchi piani topografici sono stati di rilevante importanza per definire le geometrie sotterranee dei sedimenti alluvionali recenti e dei terreni di riporto e per correlare in modo più organico le stratigrafie dei sondaggi per i quali, a causa dei vincoli im-
posti dalla urbanizzazione attuale, non era stata attuabile un'ubicazione in corrispondenza dell'asse delle gallerie.

I dati ottenuti dalle indagini effettuate, sulla base del modello geologico a grande scala dell'area interessata, hanno permesso di ricostruire la situazione geologica di dettaglio lungo l'allineamento della linea in questione ed in corrispondenza di ogni singola opera. L'esito di tale caratterizzazione è sinteticamente evidenziato nel profilo geologico riportato nelle figure 2 e 3 .

Il tracciato di progetto prevede l'inizio del prolungamento a partire da Piazza Bologna, con la stazione sfalsata su un binari pari e dispari, ubicata a due diverse quote di partenza. Il binario pari sarà inizialmente scavato all'interno dei depositi piroclastici, costituiti da piroclastiti granulometricamente associabili a sabbie e sabbie limose da grigio marrone a verdi per un tratto di circa 200-250m. Il binario dispari invece, disposto all'intradosso circa 7 m . al di sotto del binario pari, interesserà, nella zona di attacco, il contatto stratigrafico tra le piroclastiti ed i depositi del Paleotevere 2 a prevalente composizione sabbioso limosa.

Successivamente i due binari procedono in affiancamento andando ad interessare in prossimità della stazione Nomentana, i depositi a maggior componente limoso sabbiosa del Paleotevere 2. La sequenza stratigrafica vede la presenza di uno strato di riporto a spessore variabile compreso tra 4-8 m., sovrastante un livello piroclastico di circa 68 m . Al di sotto di tali depositi si collocano i materiali fluvio-lacustri per uno spessore di circa 6 m ., poggianti su argille limose. Entrambi questi termini appartengono al Paleotevere 2. La stazio-
ne Nomentana interesserà quindi nelle sue strutture, la formazione del Paleotevere 2 con al tetto la frazione sabbioso argillosa ed al letto la frazione limoso argillosa. Dopo un percorso di circa 400 m . le gallerie raggiungeranno poi la stazione Annibaliano. Dal punto di vista geologico la formazione interessata sarà sempre quella delle alluvioni recenti, sia nella sua porzione superiore a prevalente frazione argilloso-limosa che in quella inferiore caratterizzata da una componente ghiaiosa prevalente. La successiva stazione Gondar, ubicata a circa 1 km, sarà interessata da un assetto stratigrafico molto variabile per la presenza del paleoalveo del fosso di Sant'Agnese, che ha profondamente condizionato le diverse fasi deposizionali. In particolare la stazione interesserà principalmente le Alluvioni recenti (sia la parte argilloso-limosa che quella ghiaiosa prevalente) con la probabile intercettazione delle ghiaie del Paleotevere alla quota del binario inferiore. In prossimità di P.za Gondar il tracciato at-

Legenda della Figura 2 - profilo da piazza Bologna a piazza S. Emerenziana,riportata nella pagina successiva.
CARTA DELLA IDONEITA' TERRITORIALE
Profilo Bologna - S.Emerenziana

cantweran

traversa poi i terreni alluvionali recenti del Fosso di S. Agnese, rientra brevemente nelle ghiaie - che saranno poi intercettate nuovamente poco prima di sottopassare il fiume Aniene - per poi attraversare, fino a P.za Conca d'oro, i depositi che costituiscono il riempimento più recente della valle alluvionale del Fiume Aniene. La stazione Conca d'Oro e le gallerie della tratta terminale si sviIuppano infatti in tali depositi alluvionali recenti, caratterizzati da una prevalente componente limoso-argillosa.

Acque sotterranee

La campagna piezometrica, eseguita fino ad oggi ha consentito di ricostruire l'andamento e la quota della superficie piezometrica della falda acquifera lungo il tracciato della linea.

Nel tratto compreso tra P.za Bologna e Via di S. Costanza, la falda è situata nei depositi sedimentari del Paleotevere, in continuità idraulica con il complesso idrogeologico delle vulcaniti. Le quote piezometriche della falda suddetta degradano gradualmente da quota 29 m s.l.m. (Piazza Bologna) a quota 25 m s.l.m. (via di S. Costanza) per scendere poi alla quota di 22m s.l.m. a Piazza Annibaliano, ove la falda trova sede nelle alluvioni recenti del Fosso di S. Agnese e nei sottostanti depositi del Paleotevere 2; la circolazione generale della falda nella zona collinare mostra un drenaggio verso i corsi d'acqua e le paleovalli principali, in funzione della geometria del letto impermeabile e dalla quota piezometrica più alta, individuata - per le vulcaniti - nella zona delI'Esquilino. Nella zona in oggetto, il paleoalveo del Fosso di S. Agnese e quindi il fiume Aniene rappresentano il livello di base della falda stessa, determinando la continuità idraulica tra questo acquifero
(con funzione di ricarica) e i depositi delle Alluvioni recenti. Le oscillazioni stagionali del livello medio della falda presentano valori intorno al metro. In generale, i depositi piroclastici sono mediamente permeabili per porosità (nel caso delle piroclastiti sciolte) e solo localmente per fratturazione (nel caso dei tufi litoidi). I livelli piezometrici segnalati dai piezometri profondi ubicati nelle ghiaie non presentano variazioni stagionali significative del livello medio; rare e localizzate (nei settori in cui mancano i livelli argilloso-limosi) sono le oscillazioni che raggiungono un massimo di circa $1,5 \mathrm{~m}$.

Nei depositi alluvionali recenti, lungo il Fosso di S. Agnese e fino all'Aniene, le quote piezometriche variano gradualmente da 22 m s.l.m. a Piazza Annibaliano, a quota 19 m s.l.m. all'altezza di via Lago di Lesina, a quota 15m s.l.m. a Piazza Palombara Sabina (Stazione Gondar), a quota 13 m s.l.m. in corrispondenza della Tangenziale, per poi raccordarsi più avanti all'Aniene. Sempre nei depositi alluvionali, in sponda destra dell'Aniene, la

Legenda della Figura 3 - Profilo da piazza S. Emerenziana a Conca d'Oro riportata nella pagina successiva.
CARTA DELLA IDONEITA' TERRITORIALE
Profilo S.Emerenziana - Conca d'Oro

superficie piezometrica risale gradualmente alla quota di 15 m circa s.l.m. in corrispondenza della Stazione Conca D'Oro per poi raggiungere la quota di 16 17 m s.I.m. verso le pendici della collina di Monte Sacro. Nel tracciato di riferimento la falda presenta una variazione stagionale del livello medio di $0,7 \mathrm{~m}$, con picchi massimi rilevati di circa $1,25 \mathrm{~m}$. Non si escludono però, nelle vicinanze del fiume Aniene, variazioni maggiori del livello di falda legati a fenomeni di piena.

Cavità

Nell'ambito delle diverse fasi di progettazione sono state valutate le possibili interferenze del tracciato e delle opere minori con strutture archeologiche (camere, gallerie) e/o cavità naturali o antropiche. In particolare, in relazione alle caratteristiche della zona attraversata dalla linea, lo studio è stato mirato principalmente all'individuazione di possibili: siti archeologici nei depositi di riporto; cavità (antropiche o naturali) nei depositi piroclastici.

L'attività svolta si è articolata nel seguente modo: ricerca bibliografica dei dati disponibili in letteratura; risultanze delle indagini archeologiche in situ (sondaggi e trincee) condotte sotto la direzione scientifica dei funzionari della Soprintendenza Archeologica; risultanze archeologiche del campo prova di piazza Annibaliano; risultanze delle varie campagne geognostiche, geologico-stratigrafiche e geotecniche; risultanze delle indagini geognostiche integrative a distruzione di nucleo mirate all'individuazione di cavità, nel tratto d'interferenza diretta del tracciato con i depositi piroclastici (Piazza Bologna-Via Corvisieri).

Considerando che nell'area della città di Roma le cavità sono segnalate princi-
palmente all'interno dei depositi di natura vulcanica, si è ritenuto che una possibile interferenza dell'opera con tale strutture si possa verificare solo nelle zone in cui il tracciato interessi il sottosuolo costituito da tali depositi. Poiché il tracciato in esame si sviluppa principalmente in depositi alluvionali (Alluvioni recenti ed Alluvioni del Paleotevere 2) e solo parzialmente nelle coltri piroclastiche, il rischio di interferenze con cavità risulta in generale modesto. In particolare, considerando la ricostruzione geologico-stratigrafica lungo il tracciato, è possibile limitare tale rischio al tratto compreso tra Piazza Bologna e Via Bressanone, dove la successione stratigrafica presenta, al di sotto di una copertura di riporto, depositi piroclastici aventi spessori compresi tra 5 m e 15 m . In base alle quote del tracciato ed alla ubicazione delle opere minori (pozzi di ventilazione, pozzi d'accesso, discenderie) si possono individuare le seguenti zone di possibile o eventuali interferenze: per la linea, il tratto compreso tra Piazza Bologna e Via Corvisieri (lato Caserma "Piave" G.d.F.); per le opere minori, I'area compresa tra Piazza Bologna e Via Bressanone.

Al fine d'integrare e verificare le conoscenze circa la presenza d'interferenze tra l'opera metropolitana e le possibili cavità sotterranee, considerando che tali cavità possono prodursi anche per perdite sotterranee delle fognature e della rete idrica o per motivi naturali, è stata predisposta una campagna geognostica di perforazioni a distruzione di nucleo, costituita da cinquanta sondaggi, disposti lungo il tracciato delle future gallerie di linea a distanze massime di tra $5-10 \mathrm{~m}$ l'uno dall'altro e spinti sino alla profondità di 15 m dal p.c.. L'esito negativo di
tali indagini ha quindi escluso il ricorso alla prevista procedura di attrezzare, in caso d'individuazione di cavità, il foro con un tubo in PVC e pozzetto di protezione, in modo da poter effettuare in una seconda fase dei rilievi mediante ispezioni televisive computerizzate.

La distribuzione e la scelta della tipologia di ricerca mediante una serie di perforazioni a distruzione di nucleo è stata dettata dalle conoscenze acquisite, dalla natura dei terreni, dalla posizione del livello di falda, considerando inoltre la profondità d'indagine necessaria e la forte antropizzazione, risultando la scelta più appropriata per una fase conoscitiva.

Altro fattore importante è il livello di falda. La possibilità di riscontro di cavità infatti si riduce sensibilmente in terreni sottofalda. Le misure piezometriche effettuate lungo la linea, hanno permesso l'identificazione di vari livelli di falda. In particolare la zona a rischio cavità è interessata da un livello di falda posto ad una quota compresa tra 27 e 25 m s.l.m., quindi al di sotto di tale quote il rischio di presenza di cavità diminuisce sensibilmente.

Per l'argomento cavità si può quindi riepilogare quanto segue. Al fine di definire le aree a rischio è stata redatta una carta delle cavità sotterranee, ottenuta mediante la raccolta di dati bibliografici, che non evidenzia la presenza di aree particolarmente a rischio lungo il tracciato. Le campagne di indagini geognostiche, non mirate specificatamente alla individuazione di possibili cavità, hanno evidenziato alcuni punti di valutazione incerta, ma sempre comunque riferibili a strutture di secondaria importanza. La campagna di sondaggi a distruzione di nucleo mirata alla ricerca delle cavità nel tratto compreso tra piazza Bologna e via

Corvisieri, in cui la linea metropolitana maggiormente interferisce con i depositi piroclastici, non ha rilevato la presenza di alcuna cavità, anche in prossimità dei punti incerti di cui sopra.

Si è quindi concluso che gli elementi raccolti hanno significativamente ridotto il rischio associato alla realizzazione delle opere in questione nel caso di presenza di cavità, rischio peraltro già di partenza modesto. In ogni caso, nel progetto sono stati comunque previsti accorgimenti costruttivi (ad esempio, controlli specifici durante l'esecuzione delle perforazioni per i consolidamenti) e tecnologici (ad esempio, dotazioni delle TBM) in grado, in corso d'opera, di ridurre ancora di più il rischio specifico.

Contesto urbano

La caratterizzazione del contesto urbano è stata sviluppata in modo sistematico lungo le preesistenze a ridosso della linea, conducendo un censimento dei fabbricati con raccolta di documentazione, sopralluoghi e prove in sito per la caratterizzazione delle fondazioni.

Lo scopo dell'indagine è stato principalmente quello di individuare la geometria delle fondazioni (pali, micropali, pozzi, ecc...) che potessero interferire con le strutture della linea metropolitana in progetto nonché di acquisire in modo sistematico informazioni generali sulle caratteristiche geometriche e strutturali di ogni fabbricato e manufatto, sulla tipologia e la profondità del piano di posa delle fondazioni e sullo stato generale degli immobili interessati dal tracciato. Tutto ciò per verificarne lo stato di consistenza attuale e garantirne quello futuro durante e dopo la costruzione della metropolitana, prevedendo
ove necessario adeguate opere di consolidamento, ed al fine anche di definire i carichi agenti sulle gallerie di linea e di stazione necessari come dati di input nel modello di calcolo delle medesime. Si sono identificati ed analizzati circa 130 fabbricati localizzati in una fascia di circa 50 m a cavallo dell'asse del tracciato, e per essi sono state prodotte monografie tecniche specifiche. Gli stessi sono oggetto della campagna di testimoniali di stato avviata dall'Appaltatore e del successivo monitoraggio in corso d'opera.

I dati raccolti hanno permesso di formulare una classificazione indiretta delle tipologie di fondazioni di fabbricati simili e contigui correlando i dati ricavati dalle stratigrafie ricostruite sulla base delle indagini geognostiche con le caratteristiche dimensionali degli edifici (numeri di piani entro e fuori terra), con la tipologia strutturale e con l'epoca di costruzione dei medesimi. Questa analisi è descritta nel paragrafo seguente. I dati significativi su cui si è accentrata l'attenzione nella fase di progettazione sono stati i seguenti: localizzazione, tipologia strutturale, periodo di costruzione, piani fuori terra, piani interrati, tipologia delle fondazioni, stratigrafia del terreno di fondazione, geometria delle fondazioni. In funzione dei dati precedentemente descritti e^{\prime} stata stimata la profondità delle fondazioni degli edifici anche per i quali non e^{\prime} stato possibile ottenere un'informazione diretta, e definita la classe di fondazione distinguendo la medesima fra diretta ed indiretta.

Soluzioni costruttive e tecnologiche

La scelta dei sistemi costruttivi con cui si è previsto di realizzare le opere co-
stituenti la nuova Linea metropolitana è mirata alla riduzione della interferenza con le preesistenze, soprattutto in termini di cedimenti indotti in superficie. Particolare importanza ha rivestito nella definizione dei sistemi costruttivi di progetto, la realizzazione di un "pozzo prova" a piazza Annibaliano, che è stato a tutti gli effetti un campo prova preliminare di alcune delle tecnologie di consolidamento e costruttive di cui si è prevista l'applicazione. Tra le evidenze più importanti confermate da tale prova vi è sicuramente la verifica dell'importanza di un assoluto idrostatismo nelle fasi esecutive, in quanto un seppur minimo drenaggio e conseguente abbattimento della falda più superficiale (all'interno dei riporti e/o dei depositi fini superiori) si traduce a stretto giro in una subsidenza del piano campagna. Di conseguenza sono state adottate tecniche costruttive specifiche per l'esecuzione delle gallerie a foro cieco e dei manufatti tra paratie tali da garantire la tenuta idraulica del profilo di scavo e dei giunti anche nelle fasi di scavo. Inoltre si è previsto per la realizzazione delle perforazioni sotto falda l'utilizzo di preventer, che impediscano il rifluimento dell'acqua di falda verso la bocca del foro in fase di perforazione prima e di iniezione successivamente.

Gallerie di linea

Si prevede di realizzare una via di corsa per ogni binario, con sezioni di circa $35 \mathrm{~m}^{2}$, necessarie a contenere le sagome del materiale rotabile, dell'armamento e degli impianti di linea e di esercizio. Ciò si traduce in gallerie del diametro interno utile di $5,80 \mathrm{~m}$ (diametro di scavo circa 6,75 m).

Nella scelta della tipologia del sistema di scavo da utilizzare per la realizzazione delle gallerie di linea sono stati considerati vari fattori quali: il tracciato plano altimetrico, per la valutazione delle interferenze con le preesistenze e delle problematiche di inserimento geometrico della sezione di scavo nel contesto stratigrafico ed idrogeologico; i risultati delle indagini geotecniche effettuate, con particolare riguardo: alle distribuzioni granulometriche comprese le frazioni fini, ai limiti di Attemberg, ai coefficienti di permeabilità ed alla posizione della falda con le relative escursioni stagionali; le possibilità offerte dalle diverse tecniche di scavo (in tradizionale e meccanizzato); nell'ambito dello scavo meccanizzato le problematiche di natura tecnologica dei diversi sistemi (scudo aperto, a pressione di fango, a pressione di terra) o, mirate all'ottenimento dei seguenti risultati: maggiore garanzia di stabilità del fronte di scavo e di conseguente contenimento delle deformazioni indotte nell'ammasso; minimizzazione dei cedimenti superficiali indotti dallo scavo; maggiore affidabilità dello scavo sotto falda; velocizzazione delle fasi di scavo e di rivestimento; industrializzazione delle fasi operative.

La valutazione degli aspetti di cui sopra ha indirizzato la scelta verso una soluzione con scavo meccanizzato, realizzato mediante scudo a pressione di terra bilanciata (tipo EPBS, "Earth Pressure Balance Shield"), attualmente tra le tecnologie più moderne disponibili nel settore. Lo scavo in tradizionale è stato escluso quale metodo realizzativo delie gallerie di linea, in quanto richiederebbe notevoli opere sistematiche di preconsolidamento e consolidamento, con
conseguenti ridotte velocità di avanzamento ed elevati costi, senza peraltro raggiungere le stesse garanzie di controllo dei cedimenti e quindi dei rischi di danno alle opere preesistenti in superficie ottenibili con uno scavo meccanizzato con contropressione al fronte. Per tale motivo lo scavo in tradizionale nelle gallerie di linea è stato limitato ai soli tratti in cui le gallerie di linea devono avere sezioni maggiori della standard per motivi funzionali o statici (tratta terminale, con sezioni di scavo fino a 100 m^{2}). Lo scavo meccanizzato con contropressione al fronte di scavo è invece in grado di ottenere (e mantenere), con un corretto funzionamento della macchina e con un attento controllo in corso d'opera, valori di cedimento superficiale accettabili, entro i limiti imposti progettualmente. Tale sistema garantisce infatti la possibilità di applicare una corretta pressione sul fronte di scavo in modo continuo e modulabile in ogni fase di lavorazione non consentendo così la decompressione del nucleo di terreno in avanzamento (controllo dei cedimenti in superficie), e contrastando la pressione esercitata dall'acqua (riduzione del drenaggio indotto).

La scelta di un "EPBS" deriva da una maggiore velocità di adattamento alle possibili diverse situazioni litologiche, ad un miglior controllo della pressione al fronte anche in zone a maggiore permeabilità, ai minori ingombri necessari e costi legati alla cantierizzazione, alla più facile ed immediata trasportabilità dello smarino. Fin dalia fase progettuale sono state evidenziate come necessarie alcune dotazioni supplementari. La macchina deve essere attrezzata in maniera da poter realizzare, in modo non
sistematico ma in corrispondenza di punti critici localizzati previsti o riscontrati solo in corso d'opera, delle perforazioni in avanzamento, da utilizzare quali prospezioni geognostiche dirette (per valutare le caratteristiche dei terreni e/o la presenza di strutture interferenti, quali ad esempio cavità) o indirette (misure geofisiche, tipo georadar in foro, DWT), o per la realizzazione di pre-consolidamenti (iniezioni selettive, jet-grouting), sia al fronte che al contorno del cavo. Per fare ciò si dovranno predisporre all'interno del mantello e nel back-up le attrezzature di perforazione, che attraverso finestre predisposte sulla testa e/o sul mantello consentano la realizzazione dei fori necessari, ed i conseguenti impianti di miscelazione ed iniezione. Potrà risultare utile in casi particolari anche ricorrere alla prospezione sismica dalle pareti della galleria già realizzata, disponendo opportunamente sul rivestimento definitivo i necessari energizzatori e ricevitori.

Gallerie di linea e discenderie scavate in tradizionale

La realizzazione di gallerie con scavo in tradizionale con riferimento ai problemi di interazione con le preesistenze richiede un intenso e sistematico intervento di pre-consolidamento in avanzamento, che consenta di controllare in maniera accettabile i fenomeni deformativi indotti. Analogamente le fasi esecutive di avanzamento e di realizzazione del rivestimento definitivo devono seguire rigorosamente i criteri e le prescrizioni progettuali.

Gli interventi e le fasi esecutive progettate sono studiate al fine di controllare e ridurre al minimo la risposta defor-
mativa dell'ammasso, in particolare prevedendo il consolidamento del fronte e dell'ammasso al contorno del cavo, la chiusura del prerivestimento provvisorio al fronte mediante puntone in avanzamento, la realizzazione del rivestimento definitivo (arco rovescio, murette e calotta) a distanza ravvicinata dal fronte, il controllo dei dati di perforazione e dei parametri di trattamento del terreno.

La realizzazione in avanzamento del preconsolidamento del fronte e del contorno della sezione di scavo deve garantire, oltre alle richieste caratteristiche di progetto del terreno trattato, anche la riduzione al minimo del disturbo nell'ammasso, che ha diretta influenza sul quadro deformativo indotto. Per il pre-consolidamento in avanzamento mediante elementi strutturali in VTR, semplicemente cementati sul fronte ed iniettati in pressione al contorno, devono essere ridotti al minimo il numero dei fori aperti contemporaneamente e non iniettati, i tempi di inserimento dell'elemento strutturale e di realizzazione della cementazione/trattamento. Per il trattamento jet-grouting assume particolare rilevanza una corretta spaziatura fra trattamenti eseguiti in stretta sequenza temporale, dovendo necessariamente evitare la realizzazione di un trattamento in prossimità di un altro ancora in fase di inizio presa della miscela cementizia iniettata. Per entrambi i tipi di consolidamento è prescritto un attento controllo delle pressioni e dei volumi iniettati, soprattutto in corrispondenza delle tratte a minor copertura. Si ritiene inoltre assolutamente necessario evitare qualsiasi trasporto di materiale fino all'interno dello scavo dovuto all'azione dell'acqua drenata dalle perforazioni: si è previsto in-
fatti l'utilizzo di appositi "preventer".
Lo scavo di avanzamento è previsto a piena sezione, procedendo per campioni massimi di circa 1 m con posa in opera immediata, al termine di ogni campione, del rivestimento di prima fase costituito da spritz-beton fibrorinforzato dello spessore di progetto e da centine metalliche, complete di puntone sotto l'arco rovescio. Al termine di ogni campione di scavo si dovrà sagomare il fronte a forma concava, eventualmente proteggendolo con uno strato di spritz-beton fibrorinforzato, con funzione di contenimento strutturale del fronte e di limitare il più possibile il processo di alterazione che il terreno subisce a contatto con l'atmosfera. A seguire verrà realizzato il getto di arco rovescio, murette e calotta a distanze dal fronte di scavo regolate in funzione del comportamento deformativo del fronte e del cavo, e comunque non superiori ai valori prefissati in progetto.

Stazione Nomentana

La stazione Nomentana è caratterizzata da una lunghezza di banchina di 150 m (come le altre tre stazioni previste) e da una banchina centrale tra le due vie di corsa che si trovano allo stesso livello. La soluzione progettuale prevede la sua realizzazione con scavo a foro cieco (sezione complessiva di scavo pari a circa $350 \mathrm{~m}^{2}$ che contiene anche il piano atrio). Dal punto di vista costruttivo si prevede la applicazione della tecnica dell'"Arco cellulare", che consente di realizzare l'intera struttura portante ed il rivestimento della futura galleria di stazione prima ancora di iniziarne lo scavo. Il graticcio costituito da elementi longitudinali (tubi in c.a.v. realizzati con microtunnel) e archi trasversali (in c.a., gettati in opera) è ca-
pace di garantire la canalizzazione delle tensioni al contorno del cavo, generando artificialmente l'effetto arco indispensabile per la stabilità a breve ed a lungo termine dell'opera da scavare.

Al fine di minimizzare il risentimento indotto in superficie, preventivamente allo scavo della Stazione si è prevista anche la realizzazione dal pozzo costruttivo NP1 di un cunicolo di piccolo diametro, disposto al disotto della calotta della futura stazione, dal quale realizzare un consolidamento diffuso dell'ammasso interessato dal successivo scavo, mediante iniezioni selettive in pressione, con le modalità a volume e pressione controllati.

Lo scavo delle gallerie di piedritto seguirà con modalità di avanzamento similari a quelle adottate per gli scavi in tradizionale, con al termine il getto in opera del piedritto della futura galleria di stazione. Per la realizzazione dei tubi di cui si compone l'arco cellulare, si è prevista invece l'applicazione della tecnica del microtunnelling, che con idonea attrezzatura di scavo, smarino e spinta, consente di porre in opera immediatamente il rivestimento definitivo costituito da tubi in c.a.v.. minimizzando i possibili cedimenti in superficie (anche con l'ausilio di iniezioni di intasamento effettuate nel vuoto anulare tra il profilo di scavo e l'estradosso dei tubi). Una volta completato lo scavo dei tubi si dovrà realizzare lo scavo degli archi in c.a. di completamento della struttura a graticcio, al termine del quale si procederà alla posa in opera della armatura metallica di tubi ed archi, ed al getto di riempimento degli stessi con calcestruzzo autocompattante (procedendo per fasi). Al di sotto del graticcio realizzato si potrà procedere allo scavo ed al getto della calotta e dell' arco rovescio di
stazione, avendo limitato al minimo le possibilità di detensionamento dell'ammasso al contorno della stazione stessa.

Stazioni tra paratie (Annibaliano, Gondar e Conca d'oro)

Le altre stazioni, tutte caratterizzate dalle stesse lunghezze di banchina di Nomentana, si differenziano tra loro (Annibaliano e Gondar da Conca d'Oro) per la posizione reciproca delle due vie di corsa. Nelle stazioni di Gondar ed Annibaliano i due binari transitano sovrapposti e conseguentemente le banchine si trovano su due livelli differenti; nella stazione Conca d'Oro invece i due binari si trovano allo stesso livello e le banchine sono laterali (non centrali come a Nomentana). I piani atrio sono contenuti nel manufatto di stazione, non realizzato a foro cieco ma tra paratie. La larghezza delle stazioni risulta invece differente in quanto: per Gondar tutte le salite e discese sono contenute in un pozzo laterale e quindi la larghezza è pari a soli circa 13 m (larghezza vie di corsa più banchina di stazione); per Annibaliano all'interno delle paratie sono invece localizzate anche le vie di accesso e di uscita dalle banchine, e quindi la larghezza della stazione (circa 20 m .) è maggiore di quella strettamente necessaria alle vie di corsa più la banchina di stazione; per Conca d'Oro la larghezza è invece dettata dalla soluzione a banchine laterali, arrivando ad un larghezza di circa 30 metri.

La soluzione costruttiva individuata prevede la realizzazione dello scavo sot-
to copertura, protetto da paratie di sostegno in c.a. realizzate da piano campagna, procedendo per campioni e realizzando al termine di ogni step un orizzonte definitivo (solaio in c.a.) o provvisorio (puntoni metallici) di contrasto. Ciò fino ad arrivare al fondo dello scavo, protetto da un tampone di fondo realizzato da piano campagna, e realizzare il solettone di fondo della stazione. Le pareti della "scatola" ed il completamento delle strutture interne orizzontali saranno realizzate in risalita, dopo aver posto in opera la prevista impermeabilizzazione.

Particolare attenzione è stata posta al rispetto della condizione progettuale dell' "idrostatismo", prevedendo l'utilizzo, per le stazioni più profonde, della tecnologia esecutiva dell'idrofresa per la realizzazione delle paratie perimetrali, puntando alla massima garanzia possibile per la tenuta idraulica dei giunti tra pannelli adiacenti. Per le opere più superficiali, per le quali è previsto l'utilizzo delle benne mordenti classiche, si è comunque prescritto I'utilizzo di particolari accorgimenti per la chiusura dei suddetti giunti (tubo-spalla, water-stop, iniezioni,.....). Per tutte le opere tra paratie è stato comunque previsto, e opportunamente dimensionato dal punto di vista statico e "idraulico", un tampone di fondo realizzato con la tecnologia del jet-grouting. Entrambe le tecnologie, idrofresa e jet-grouting, saranno opportunamente testate e messe a punto in specifici campi prova da realizzare in corrispondenza di ognuno dei siti ritenuti significativi dal punto di vista geotecnica ed idrogeologico.

Breve nota sui problemi relativi alla progettazione delle strutture dei parcheggi

Antonio Maria Michetti, Andrea Cinuzzi

Per prima cosa occorre ricordare che con l'Ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20.03.2003 la città di Roma è stata classificata tra le zone soggette a rischio sismico.
Per quanto riguarda la valutazione dei carichi accidentali per quantificare l'entità delle azioni orizzontali derivanti dall'eventuale azione sismica non si possono applicare coefficienti riduttivi.

Deve pertanto essere considerato il carico di $250 \mathrm{~kg} / \mathrm{m}^{2}$ previsto dal D.M. del 16.01.1996 relativo ai valori dei carichi e sovraccarichi per le varie tipologie d'uso: abitazioni, uffici aperti al pubblico o non aperti al pubblico, depositi etc.

Per quanto concerne i parcheggi il carico accidentale previsto è, come abbiamo già detto, $250 \mathrm{~kg} / \mathrm{m}^{2}$.

Sulla base di quanto previsto nel D.M. n. 19 del 16.01 .1996 relativo alle costruzioni in zone a rischio sismico il carico accidentale di $250 \mathrm{~kg} / \mathrm{m}^{2}$ deve essere considerato nella sua interezza senza riduzioni previste per altre tipologie edilizie.

Premesso quanto sopra si fa presente che i parcheggi possono essere di varie tipologie. Precisamente possiamo avere:
a) parcheggi totalmente interrati per una profondità di circa $3,5 \mathrm{~m}$ per un solo piano; di circa 7 m per due piani; per circa 9-10 metri per tre piani;

[^5]b) parcheggi che oltre ad avere uno due o tre piani interrati hanno anche piani fuori terra utilizzati sempre per parcheggi;
c) parcheggi che avendo uno o più piani interrati abbiano per i piani fuori terra, una destinazione d'uso di tipo diverso; ad esempio centri commerciali, uffici oppure (molto raramente) abitazioni;
d) parcheggi meccanizzati.

Problemi di progettazione

Molteplici sono i problemi da risolvere nella progettazione dei parcheggi.

Tali problemi sono di tipi diversi a seconda dei vari casi precedentemente elencati.

Essi possono essere così definiti:

1) problemi di "tipo architettonico". Intendendo per tali quelli relativi: alla definizione dei vari COMPARTIMENTI: al posizionamento e definizione delle rampe di uscita: al posizionamento e definizione delle prese d'aria e di tutte le canalizzazioni necessarie.
2) Problemi di "tipo strutturale". E^{\prime} evidente che per risolvere i problemi definiti al punto precedente è indispensabile che venga individuata la tecnica che si intende utilizzare (acciaio, cemento armato e precompresso) e venga fatto un proporzionamento preliminare per le strutture relative.
3) Problemi di "tipo impiantistico". Anche in tal caso si presentano problemi analoghi a quelli precedentemente esposti sulle strutture. E' quindi necessario che fin dall'inizio della progettazione siano presenti nel gruppo di progettisti anche tecnici esperti per le singole tipologie.
4) Problemi di "tipo esecutivo". Intendendo per tali quelli relativi al po-
sizionamento della o delle gru; al posizionamento e dimensionamento per le aree per lo stoccaggio dei materiali. Dato che nella quasi totalità dei casi il progetto viene presentato alla Municipalità da quello che sarà poi il realizzatore, è opportuno che i problemi relativi a questo punto vengano risolti utilizzando il suo contributo.
5) Problemi derivanti dalle "caratteristiche geotecniche" del lotto nel quale si deve realizzare il parcheggio. Sarebbe bene che fin dalla progettazione di massima fossero note le caratteristiche di natura geotecnica per poter definire, sia la tipologia delle fondazioni sia le caratteristiche e le modalità di esecuzione delle opere di contenimento. A tal fine è però necessario che il numero dei carotaggi per ricavare i campioni di terreno da sottoporre alle prove di laboratorio siano in numero sufficiente per individuare le caratteristiche geotecniche su tutta l'area di intervento. Occorre in questo caso vincere la resistenza del costruttore che cerca sempre di limitare al minimo numero possibile tali sondaggi preventivi.

In modo particolare occorre individuare i vari livelli di eventuali falde.

Nel caso che da tali sondaggi emergesse la necessità di realizzare le fondazioni su pali sarebbe opportuno che prima di iniziare i lavori vengano effettuate prove su pali campione atte ad individuare l'effettiva resistenza sia per l'aderenza laterale sia per resistenza alla punta.

Occorre infine tenere presente che in tutti i casi, su tutto il perimetro della zona di edificazione occorrerà realizzare importanti opere di contenimento per rendere sicuri i fronti di sbancamento.

Tali opere possono essere realizzate con muri a gravità purchè sia possibile la realizzazione di tiranti ammorsati nel terreno circostante il lotto; oppure con ture di pali o con paratie a setti.
6) Problemi derivanti dalle "caratteristiche al contorno". In molti casi le aree di intervento hanno alcuni (o tutti) i confini in corrispondenza di strade. In tal caso occorre accertare presso gli uffici di competenza se vi sono manufatti relativi a fogne o canalizzazioni di altro tipo. In moltissimi casi a poca distanza di tutti (od alcuni) i confini dell'area di intervento vi sono edifici di proprietà privata oppure pubblica. Logicamente in questo caso occorre prevedere che con le nuove edificazioni non si arrechino danni a queste proprietà. A tale proposito occorre tenere presente che non appena si viene a conoscenza che le Autorità comunali hanno dato il benestare per la realizzazione di un parcheggio interrato si scatena in termini di tempo quanto mai ristretti l'opposizione di tutte le proprietà limitrofe. Vengono costituiti dei comitati; in essi sono sempre presenti avvocati, ingegneri e geologi. Vengono allora avviati procedimenti di carattere giuridico come ricorsi al T.A.R., richieste al Tribunale Civile affinchè vengano effettuati accertamenti per "danno temuto da nuova opera".

Nella totalità dei casi il Giudice deve nominare un perito di ufficio perché (congiuntamente con i periti di parte) esplichi tutti gli accertamenti, ne tragga le opportune conseguenze, ed esprima il
suo parere.
Nessuno può dire quanto tempo sarà necessario affinchè il parere richiesto venga espresso.

E' opportuno tenere presente che il problema più importante da esaminare con il C.T.U. è quello delle opere di contenimento che come detto dovranno essere realizzate su tutto il perimetro del lotto.

Nella quasi totalità dei casi tali opere sono costituite da "ture di pali accostati". Se dai sondaggi geotecnici effettuati risulta che per la esecuzione dei pali si intercetteranno falde di acqua è indispensabile che i singoli pali di tura siano distanziati tra loro per permettere il passaggio delle acque di falda.
E^{\prime} inoltre necessario che i pali di tura abbiano una profondità ed una armatura, tali da fornire la necessaria resistenza ed uno spostamento orizzontale (alla testa dei pali) che rientri entro valori prestabiliti.

A tale proposito occorre infine tenere presente che in commercio vi sono anche programmi di calcolo dei pali di tura che non forniscono risultati attendibili.

In molti casi si sono verificati inconvenienti seri; in un numero per fortuna molto limitato di casi si è evitato il peggio tramite la realizzazione di opere aggiuntive.

Nelle brevi note precedentemente esposte sono stati definiti, in termini sommari, i problemi principali per quanto riguarda i normali parcheggi interrati. Come già accennato esistono però anche i parcheggi meccanizzati.

Il Fascicolo del Fabbricato

Daniela Marzano

Premessa

Nella prima parte del convegno è stata approfondita la situazione del suolo e sottosuolo di Roma, affrontando le problematiche legate alla geologia, all'idrogeologia, alla presenza di cavità sotterranee ed alla risposta sismica dei terreni di Roma. Queste considerazioni permettono di individuare il rischio corso dai cittadini e di studiare i conseguenti sistemi di sicurezza dei fabbricati.

E' ormai evidente che un processo di sensibilizzazione sulla sicurezza dei fabbricati sia stato avviato da tempo, ed è chiaro che la progettazione della sicurezza tramite una conoscenza approfondita dell'ambiente è oltre che un dovere anche un investimento sociale, umano ed economico.

In passato sono state numerose le iniziative finalizzate all'educazione, alla prevenzione e alla formazione sulla sicurezza. Oggi è arrivato il momento di coordinare ed unificare tutte le numerose iniziative di Ordini, Associazioni ed Università e le numerose leggi regionali approvate od allo studio sul Fascicolo del Fabbricato.

Il Fascicolo del Fabbricato approvato dal Comune di Roma si è rivelato uno strumento necessario per la campagna di prevenzione e riduzione dei rischi gravanti

[^6]
sugli edifici e gli stessi vigili del Fuoco hanno più volte evidenziato come il Fascicolo sia un valido strumento di aiuto al lavoro quotidiano, avendo l'Italia un patrimonio immobiliare vetusto (più del 70% degli immobili ha oltre 50 anni) e raramente oggetto di manutenzioni periodiche.

Cosa è e a cosa serve il Fascicolo del Fabbricato

Il Fascicolo del Fabbricato si può definire "la cartella clinica" di un edificio, sulla quale sono annotate tutte le caratteristiche dell'immobile e le modifiche apportate all'edificio dall'epoca della sua costruzione fino allo stato attuale, in modo tale da poter individuare e ridurre eventuali fattori di rischio, per la sicurezza dei cittadini.

Con la Legge Regionale n. 31 del 12 settembre 2002 la Regione si esprime su "la necessità di conoscere lo stato conservativo del patrimonio edilizio, di provvedere alla individuazione di situazioni a rischio relative a fabbricati pubblici e privati e di programmare eventuali interventi di ristrutturazione e di manutenzione degli stessi, onde prevenire rischi di eventi calamitosi...", e ritiene necessario, per i comuni che sceglieranno di adottare il Fascicolo, si conferma avere uno strumento che contenga "tutte le informazioni riguardanti la situazione progettuale, urbanisti-
ca, edilizia, catastale, strutturale, impiantistica e autorizzativa" per "eseguire interventi idonei a ripristinare la condizioni di sicurezza del fabbricato".

Il Fascicolo è quindi uno strumento per conoscere, programmare e prevenire i rischi al fine di raggiungere una maggiore sicurezza degli immobili, e di conseguenza dei cittadini.

Purtroppo alla legge n. 31 del 30 settembre 2002, concernente l'istituzione del Fascicolo del Fabbricato, ha fatto seguito, il 14 aprile 2005, dopo ben tre anni, un regolamento di attuazione che "dimentica" di esplicitare gli accertamenti di carattere geologico ed agroforestale, includendoli genericamente in quelli statici. Si è tornati così indietro rispetto a quanto già attuato nel Comune di Roma dal 1999, quando ancor prima della legge regionale, si riteneva importante analizzare tutti i fattori che possono incidere su un edificio.

Un altro aspetto del Fascicolo, come oggi regolato, che desta perplessità, è quello relativo ai nuovi termini di scadenza per la consegna dei fascicoli al Comune di Roma.

Il Comune ha interpretato molto liberamente l'art. 4 comma 2 del Regolamento Regionale, ritenendo che aree a "particolare rischio" soggette alla prima scadenza prevista dal regolamento (30 settembre 2005) per la consegna, siano tutte quelle interessate dal patrimonio immobiliare antecedente al 1939, e che per aree a basso rischio si potessero intendere quelle interessate dagli immobili edifi-
cati successivamente.
Questa interpretazione delle scadenze del Regolamento Regionale porta a non tener conto della concomitanza di più fattori di rischio, riferiti alle caratteristiche del territorio ed al patrimonio immobiliare, come illustrato nell'art. 9 del Regolamento.

Inoltre la maggior parte di Comuni laziali, non avendo incentivi per l'adozione del Fascicolo del Fabbricato, saranno piuttosto indifferenti all'adozione del fascicolo, tranne in caso di particolare sensibilità verso l'argomento.

In tal modo, per evitare problemi organizzativi, si eviterà di adottare il fascicolo trascurando così i benefici derivanti dal monitoraggio del territorio e dalla successiva riduzione dei rischi.

La situazione nel Lazio

Il Lazio è l'unica Regione italiana ad avere una legge ed un regolamento di attuazione.

Tale legge, che erroneamente è considerata una legge edilizia, è in realtà una

Situazioni problematiche: Roma, Zona S. Paolo

Situazioni problematiche: Napoli
legge per la sicurezza e l'incolumità pubblica.

Il problema dell'incolumità pubblica è compito specifico dello Stato, e quindi mi auguro che al più presto sia emanata una legge quadro che cerchi di sensibilizzare gli 8.000 Comuni italiani sul problema sicurezza degli edifici. Non basta procedere per leggi regionali, per quella che è una priorità sociale.

Non tutti sono al corrente che nel Lazio è stato dichiarato lo stato di emergenza per le aree dei Comuni di Tivoli e di Guidonia, ma che in tali Comuni non sia stato adottato il Fascicolo del Fabbricato.

Di fatto vi è un grandissimo vuoto conoscitivo del territorio, non esiste mappatura degli edifici, né un rapporto sul suolo ed il sottosuolo su cui sorgono.

Non dovendo più fare un'analisi preliminare dei fattori di rischio del territorio
o degli immobili, come previsto in una prima bozza di regolamento, l'unica soluzione è un'applicazione diffusa del Fascicolo e un'analisi dei dati risultanti dalla raccolta dei Fascicoli per poter in pochi anni avere una mappa delle priorità d'intervento sul territorio.

Questa ultima fase auspico sarà adottata anche dal Comune di Roma in tempi brevi, avendo già raccolto oltre 5000 fascicoli.

Attuali riferimenti legislativi

Legge Regionale del 12 settembre 2002 "Istituzione del fascicolo del fabbricato".

Regolamento di attuazione della legge regionale 12 settembre 2002 concernente l'istituzione del fascicolo del fabbricato, del 14 aprile 2005.

Delibera del Comune di Roma del 4 giugno 2003 con l'adeguamento alle disposizioni della L.R.31/02 e conferma dei protocolli d'intesa con le Associazioni, gli Ordini ed i Collegi professionali.

Delibera del Consiglio Comunale n. 27 del 24 febbraio 2004 sulle norme e tempi per la realizzazione del fascicolo del fabbricato.

Delibera del Consiglio Comunale n. 15 del 24/25 gennaio 2005.

Scadenze per la compilazione del fascicolo del fabbricato

Il Comune di Roma ha stabilito la scadenza del 30 settembre 2005 per tutti gli edifici pubblici e privati ricadenti nel territorio comunale costruiti prima del 1939.

Per tutti gli altri edifici la scadenza sarà il 31 marzo 2007.

APPENDICE

Alle origini della geologia moderna Alcune considerazioni di Horace-Benedict de Saussure e di Johann Wolfgang Goethe

a cura di Italo Insolera

Questa brevissima antologia di de Saussure e di Goethe è un intermezzo tra le presentazioni dei lavori presentate nel convegno sulla "Geologia Urbana nella capitale", un intermezzo in cui non si parlerà di Roma.

Dalle biografie di H-B. de Saussure (Ginevra 1740-1799) non risulta che sia mai venuto a Roma e casomai come turista. J.W. Goethe (Francoforte sul Meno 1749 - Weimar 1832) invece soggiornò a lungo a Roma (nella casa al Corso dove oggi c'è appunto la "Casa di Goethe") e aveva un grande interesse per le scienze: geologia, botanica, colori (le opere su questi temi superano forse per dimensioni quelle letterarie); ma a Roma si occupò d'arte e di storia.

Ho qui riportato alcuni brani di de Saussure che trattano delle Alpi (da "Voyages dans les Alpes", Georg ed. Genève 2002, trad. I.Insolera) e di Goethe che trattano del Vesuvio e dell'Etna (da "Viaggio in Italia", Arnoldo Mondadori 1983, trad. E.Castellani), accompagnando queste parole ad alcune illustrazioni. Le illustrazioni sono di due tipi:

- panorami delle Alpi, dalle guide della Svizzera e della Francia edite da Karl Baedeker (1801-1859) a Lipsia, alla fine della prima metà del 1800; quei primi "Manuali del viaggiatore" non si occupavano solo di arte, ma anzi davano alle scienze
naturali un ampio spazio. I panorami erano degli inserti piegati dentro al libro che descrivevano con precisione calligrafica I'orografia, la geologia, i ghiacciai, i laghi, le pinete, i cespugli, i sassi.
- Goethe fece durante tutta la sua vita una quantità enorme di schizzi sui taccuini che aveva sempre con sè; anche durante il viaggio in Italia (1786-1788: il libro che lo racconta fu scritto tra il 1815 e il 1829, "Italianische Reise").

Sarebbe interessante parlare anche di Alessandro Volta (1745-1827) che in quegli stessi anni risali da Como le Alpi misurando sistematicamente ogni tre ore l'altitudine, la composizione e pressione dell'aria, la presenza di gas sotterranei, la temperatura della terra e - naturalmente - quanto rilevabile nel campo elettrostatico. Ma di geologia pare se ne occupasse poco e quindi rinviamo Volta ad un altro convegno)

Horace-Benedict de Saussure scrive:
"E' soprattutto lo studio delle montagne che può far avanzare le conoscenze sulla teoria della Terra....Bisogna abbandonare le strade conosciute e salire sul-
le sommità elevate da dove si può abbracciare contemporaneamente una moltitudine di oggetti....Occorre vedere le rocce per osservarne la natura"

Arrivò per primo (o per secondo) sul Monte Bianco nel 1786 con una carovana di diciotto guide e un domestico e - fin dove l'altezza e il terreno lo permisero molti muli, carichi dei più svariati strumenti. Per tararli era andato prma in Provenza a zero metri sul mare.
"Chi è stato sulle alte montagne sa che il cielo sembra di un blu più scuro che in pianura Io cercai un metodo per misurare un "campione" di cielo sul Monte Bianco. Per fare questo avevo dipinto su delle strisce di carta sedici differenti sfumature di blu, numerate da 1 - la più scura - a 16-la più pallida -: ne avevo lasciata una a M. Senebier a Ginevra, un'altra a mio figlio a Chamonix e portai la terza con me.

A mezzogiorno del giorno stabilito il cielo allo zenith di Ginevra corrispondeva al settimo livello, a Chamonix era tra il sesto e il quinto, sulla cima tra il secondo e il primo.....

Figura 1 - Panorama vom Eggishorn, 2934 m (da La Suisse et les parties limitrophes de la Savoie

La grande purezza e trasparenza dell'aria sono le cause dell'intensità del colore blu e producono verso la cima del Monte Bianco un singolare fenomeno: si possono vedere le stelle in pieno giorno (se si è all'ombra)."
"Le caratteristiche del ghiaccio che riempie le alte vallate alpine dimostrano che esso non si è formato nè per il congelamento di grandi masse d'acqua, nè per la sovrapposizione successiva di lame d'acqua gelate, ma per il congelamento di neve bagnata E' evidente che si deve accumulare una immensa quantità di neve nelle alte valli e che sono queste nevi che, imbevute d'estate dell'acqua delle pioggie e di quella sciolta dal sole, gelano d'inverno e formano i ghiacci spugnosi di cui i ghiacciai sono formati. Ma questi ghiacci aumenterebbero continuamente se l'evaporazione, il calore sotterraneo della terra e quello prodotto dal loro proprio peso non mettessero un limite alla crescita. Il calore sotterraneo agisce continuamente sugli strati inferiori dei ghiacciai e forma itorrenti che, anche nei periodi più freddi, non cessano di uscire dalla base inferio-
re dei ghiacciai"
"Un pregiudizio assai diffuso tra gli abitanti delle Alpi è che ci siano periodi regolari nella crescita e nel ritrarsi dei ghiacciai; si dice che per sette anni i ghiacciai crescono e per sette anni si ritirano, per cui ogni quattordici anni si ritrovano esattamente allo stesso posto. L'esistenza di periodi alternati è certa, ma la loro regolarità è immaginaria. Ma come si sa la regolarità piace agli uomini, dà loro l'illusione di dominare gli eventie questo numero misterioso di due volte sette è abbastanza grande perchè si sia cancellato il ricordo preciso nella memoria di questa brava gente..... Solo dopo aver raccolto molti dati e averli comparati con precisione per un lungo periodo di anni, si potrà sapere con certezza se la massa totale dei ghiacciai aumenta, diminuisce, o resta la stessa."

Johann Wolfgang von Goethe scrive:
" Studio la botanica su strade e sentieri... Sono sempre più certo che le regole generali da me scoperte siano ap-

[^7]

Figura 2 - La Chaine du Mont Blanc vue de la Flégère, 1876 m (da La Suisse et les parties limitrophes de la Savoie e de l'Italie idem).
(lettere a von Knebel, 18 agosto e 3 ottobre 1787)

Alla fine di febbraio 1787 Goethe arriva a Napoli eil 2, il 6 e il 20 marzo sale sul Vesuvio. Questo il racconto dell'escursione del 6 marzo.
"Anche se di malavoglia, ma fedele allo spirito d'amicizia, Tischbein mi segui oggi nell'ascesa al Vesuvio (Johann Heinrich Wilhelm 1751-1829). Appartenente a una famiglia di artisti, vis-
plicabili a tutte le piante.
Spero che tu pure un giorno troverai gioia nella mia "Harmonia Plantarum" attraverso la quale il sistema di Linneo viene ottimamente chiarito, ogni divegenza sulla forma delle piante viene superata e anzi vengono perfino spiegate tutte le meraviglie della pianta "

Figura 3 - Panorama vom Pilatus (Esel), 2173 m (da La Suisse et les parties limitrophes de la Savoie e de l'Italie - idem). se a lungo in Italia e assunse la direzione dell'Accademia di Belle Arti di Napoli. Grande amico di Goethe che visse a Roma nella casa di Tischbein al Corso e fece di lui vari ritratti, tra cui quello famosissimo nella campagna romana, 1787). Per lui, artista della figurazione, unicamente interessato alle piu belle forme umane o animali, capace perfino di rendere umano l'informe - rocce o paesaggi che siano - col sentimento e col gusto, nulla può esistere di piú repulsivo d'una simile massa paurosa e amorfa, che non fa che divorare se stessa ed è nemica dichiarata d'ogni senso di bellezza.

Ai piedi della ripida china venimmo accolti da due guide, un uomo anziano e uno più giovane, ambedue ben piantati. Il primo rimorchiò me su per il monte, l'altro Ti-

Figura 4 - Dedica autografa di Johann Wolfgang Goethe da Johann Wolfgang Goethe, Reise, Zerstreuungs-und Trost-Buchlein 1806 1807, ed Insel Verlag Frankfurt am Mein 1978.
schbein. Ci rimorchiarono, è la parola; poiché queste guide portano intorno alla vita una cintura di cuoio, alla quale il viaggiatore s'aggrappa e vien tirato su, con minore sforzo delle proprie gambe e con l'ausilio del bastone.

Cosi raggiungemmo il tratto pianeggiante sopra il quale si erge il cono principale, lasciando verso nord le scorie del

Somma.

Ci bastò sorvolare con 10 sguardo la regione a ponente perché tutti i mali dello sforzo e della stanchezza svanissero come in un bagno balsamico; proseguimmo contornando il cono che fumigava incessante e gettava lapilli e cenere. Nei punti in cui lo spazio permetteva di tenerci a buona distanza, 10 spettacolo era grandioso, esaltante. Dapprima un fragoroso tuono echeggiò dalle profondità del baratro; poi subito grandi e piccoli lapilli vennero proiettati in aria a mi-gliaia, circonfusi da nubi di cenere, ricadendo quindi in gran parte nella voragine, mentre gli altri frammenti scagliati lateralmente piombavano sulla parete esterna del picco con uno strano rumore: i più grossi precipi-

Figura 5 - Un gruppo di alberi (salici e cipressi), una barca con una persona seduta e un rematore in riva ad un lago. (da Johann Wolfgang Goethe, Reise Zerstreuungs-und Trost-Buchlein 1806-1807, idem (1978).

Figura 6 - Sentiero in montagna con due baite (da Johann Wolfgang Goethe, Reise-, Zerstreuungs-und Trost-Buchlein 1806-1807, idem (1978).
tarono per primi, rimbalzando con cupe sonorità giù per i fianchi, i più piccoli seguirono strepitando, e infine si udi il ruscellare della cenere. Il fenomeno si ripeté a intervalli regolari, che riuscivamo benissimo a calcolare a nostro agio.

Tra il monte Somma e il cono lo spazio era però abbastanza ristretto, e intorno a noi s'infittiva la pioggia di lapilli, rendendoci malagevole il cammino. L'avversione di Tischbein per il vulcano continuava a crescere, vedendo che quel mostro, non contento d'esser brutto, stava facendosi anche pericoloso.

Ma poiché la presenza del pericolo esercita sempre un certo fascino ed eccita nell'uomo lo spirito di contraddizione, mi venne l'idea che nell'intervallo tra due eruzioni ci fosse modo d'ascendere il cono fino all'orlo del cratere e di tornare indietro sempre nello stesso tempo. Consultai le guide, tenendoci al riparo d'una sporgenza rocciosa del Somma, protetti
dalla quale consumammo le nostre provviste. Il più giovane si disse disposto a tentar con me l'avventura, ci foderammo i cappelli con fazzoletti di seta e di tela e ci tenemmo pronti, bastoni alla mano, mentre io mi afferravo alla sua cinghia. Ancora tutt'intorno a noi crepitavano i lapilli e pioveva la cenere, quando il gagliardo giovinetto già mi trascinava su per la petraia infocata. Sostammo davanti alla bocca formidabile; un vento lieve spingeva lontano il fumo, che però al10 stesso tempo velava l'interno dell'abisso, mentre dalle mille fenditure dei fianchi usciva il vapore. Attraverso gli squarci della caligine si scorgevano qua e là pareti di roccia spaccate da crepacci. La veduta non era né bella né istruttiva, ma proprio perché non si vedeva niente indugiammo ancora, sperando di poter osservare qualcosa. Avevamo smarrito il conto del tempo, eravamo fermi sull'orlo affilato della grande voragi-

Figura 7 - Baia nell'Italia meridionale: una roccia dalla forma bizzarra attraversa in diagonale il disegno; in fondo un castello con case intorno. (da Johann Wolfgang Goethe, Reise-, Zerstreuungs-und Tro-st-Buchlein 1806-1807, idem (1978).
ne. Tutt'a un tratto scoppio un rombo di tuono, la terribile scarica trasvolò sfiorandoci, e istintivamente ci rannicchiammo, come se potessimo salvarci dal rovinio dei massi; già riprendeva il fracasso scoppiettante dei lapilli, e senza riflettere che avremmo potuto aspettare la prossima pausa, contenti dello scampato pericolo, sotto la cenere che continuava a caderci addosso, ridiscendemmo fino ai piedi del cono, con i cappelli e le spalle abbondantemente incenerati.

Ricevuto amorevolmente, sgridato e rincorato che fui da Tischbein, mi diedi a osservare con speciale attenzione le lave antiche e recenti. La guida anziana seppe indicarmene esattamente le varie annate. Quelle più vecchie erano ricoperte di cenere e livellate, mentre le nuove, soprattutto se la colata era stata lenta, presentavano uno strano aspetto: quando infatti, nel loro fluire, esse trascinano per
un certo tratto alla loro superficie i massi induriti, avviene per forza che questi ogni tanto si arrestino, ma poi, spinti dal torrente di fuoco, si accumulino gli uni sugli altri e s'irri-gidiscano in singolarissime forme frastagliate, ancor più di quanto accade nell'analogo accavallarsi dei ghiacci. Commisti a tal caotico ammasso di rocce fuse si trovano altresi grossi blocchi che, se intaccati, mostrano nel punto di rottura caratteristiche affatto simili a quelle delle rocce primitive. Le guide asserirono trattarsi di antiche lave dello strato più profondo, che a volte vengono eruttate dal vulcano".

Nell'aprile 1787 Goethe arriva a Palermo, in nave da Napoli. Gira l'isola e alla fine da Catania sale sull'Etna il 5 maggio.
(4 maggio 1787) "Chiedemmo al ca-

Figura 8 - Veduta dall'interno di una grotta (Grotta del matrimonio a Capri ?) (da Johann Wolfgang Goethe, Reise-, Zerstreuungs-und Trost-Buchlein 1806-1807, idem (1978).

Figura 9 - Cascata che si riversa nel mare, disegnata durante il viaggio in Sicilia, probabilmente tra Catania e Messina (da Johann Wolfgang Goethe, Reise-, Zerstreuungs-und Trost-Buchlein 1806-1807, idem (1978).
valiere (Giuseppe Gioeni dei duchi d'Angiò, docente di Storia naturale all'Università di Catania) quale fosse il mezzo migliore per salire sull'Etna, ed egli ci sconsigliò in modo assoluto di tentare, specie in questa stagione, l'ascensione della vetta. "In generale" disse, scusandosi della sua franchezza," gli stranieri che vengono a Catania prendono la cosa troppo alla leggera; noi, che abitiamo vicino al vulcano, siamo contenti se, approfittando della buona occasione, riusciamo una o due volte nella vita a salire fino alla cima. Lo stesso Brydone, che con la sua descrizione accese per primo questo desiderio, non è andato molto in su; il conte Borch lascia il lettore nellincertezza, ma anche lui è arrivato solo fino a un certo punto, e cosi potrei dirle di molti altri. Per il momento la neve è ancora a livelli troppo bassi e frappone un ostacolo insormontabile. Se vuole ascol-
tare il mio consiglio, parta domattina presto a cavallo e, giunto ai piedi del Monte Rosso, salga su questa vetta; da li godrà il più splendido dei panorami e insieme potrà osservare la vecchia colata di lava del 1669 che, sgorgata in quel punto, si riversò disastrosamente sulla città. La vista è magnifica e nitida, e quanto al resto è meglio farselo raccontare ".
(5 maggio 1787) "Fidandoci del buon consiglio avuto, ci mettemmo per tempo in cammino e, cavalcando sui nostri muli con lo sguardo sempre rivolto all'indietro, ci portammo nella zona delle lave non ancora domate dal tempo. Attraverso i massi frastagliati e i lastroni che si rizzavano lungo il percorso, le bestie cercavano con fatica un precario passaggio. Raggiunta una prima altura importante, facemmo una sosta. Kniep disegnò con grande scrupolo ciò che vedevamo guardando in su: in primo piano le masse di

Figura 10 - Tivoli vista dall'altra sponda dell'Aniene; in alto il tempio di Vesta, lungo le pendici la Villa Gregoriana (da Johann Wolfgang Goethe, Reise-, Zerstreuungs-und Trost-Buchlein 1806-1807, idem (1978).

Figura 11 - "Una apocalittica visione della natura", ripresa probabilmente in Svizzera (da Johann Wolfgang Goethe, Reise-, Zerstreuungs-und Trost-Buchlein 1806-1807, idem (1978).
lava, a sinistra la cima bicipite del Monte Rosso; subito sopra di noi i boschi di Nicolosi, sui quali s'innalzava, appena fumigante, la vetta nevosa. Arrivammo alle falde del Monte Rosso, che scalai: è un ammasso di rossi frammenti vulcanici, cenere e sassi. Avrei potuto comodamente fare il giro della bocca, se un selvaggio vento di levante non avesse reso malcerto ogni passo; per tentar di avanzare dovetti togliere il mantello, ma adesso era il cappello a correre il perico10 d'esser scaraventato ad ogni istante nel cratere, e io dietro di lui. Mi sedetti per riprender fiato e guardarmi intorno, ma anche da seduto la situazione non migliorava: il turbine soffiava diritto da est sopra la contrada mirabile che si stendeva ai miei piedi, vicina e lontana, fino al mare. L'occhio abbracciava il largo litorale che va da Messina a Siracusa, con le sue curve e insenature, ora nettamente visibile, ora un poco nascosto dalle sco-

gliere prossime a riva."

It viaggio siciliano si conclude sulla strada tra Catania e Messina, dove un ambiente apparentemente più modesto, è però per il nostro viaggiatore straordinariamente ricco.
(8 maggio 1787, sulla via per Messina)" Alte rocce calcaree a sinistra, dai colori sempre più vividi, formano belle insenature marine; segue una sorta di minerale definibile come scisto argilloso o graywäcke. Nei torrenti si notano già detriti di granito. I tuberi gialli del Solanum, i fiori rossi dell'oleandro rendono allegro il paesaggio. Il fiume Nisi come i torrenti successivi trasportano scisti micacei ".
(9 maggio 1787) "Procedemmo cavalcando sotto la sferza del vento di levante, avendo a destra il mare in burrasca e dall'altra parte le rocce che l'altrieri avevamo ammirato dall'alto, lottando

Figura 12 - " Una immagine artistico-poetica ricavata da una drammatica situazione naturale" (da Johann Wolfgang Goethe, Reise-, Zerstreuungs-und Trost-Buchlein 1806-1807, idem (1978).
per tutto il giorno con l'acqua; dovemmo attraversare una quantità di torrenti, uno dei quali, il Nisi, maggiore degli altri, si fregia del titolo di fiume; ma tanto it torrenti che i detriti trascinati dai loro letti ci ostacolavano meno del mare furibondo, che in più punti si frangeva fin sulle rocce scavalcando la strada e, ricadendo, copriva di spruzzi i viaggiatori. Lo spettacolo era stupendo, e la sua singolarità ci faceva dimenticare il disagio.

Frattanto non mancava materia ai miei rilievi di mineralogia. Sotto l'azione delle intemperie gli enormi roccioni calcarei si disgregano e precipitano; le parti più cedevoli vengono corrose dal moto delle onde, mentre quelle di materiale misto, più dure, resistono, sicché l'intera spiaggia è disseminata di piriti d'ogni colore, simili alla selce cornea; ne raccogliemmo parecchi esemplari ".

Bibliografia

AA.VV. (1999) - Atti del Convegno "Le cavità sotterranee nell'area urbana di Roma e nella Provincia. Problemi di pericolosità e gestione", SIGEA Lazio e Ufficio Geologico della Provincia di Roma, Roma.
AA.VV. (2002) - Le voragini catastrofiche, un nuovo problema per la Toscana. Atti del Convegno " Le voragini catastrofiche, un nuovo problema per la Toscana", Grosseto 31 marzo 2000.
AA.VV. (2004) - Stato dell'arte sullo studio del fenomeni di sinkholes e ruolo delle amministrazioni statali e locali nel governo del territorio. Atti del 1° Seminario Roma 20 21 maggio 2004.
AA. VV. (1998) - Lasciamo all'Uomo la luce del sole Sprofondiamo i servizi - Atti del Convegno - Milano, 7/8 novembre 1988.
AGAMENNONE G. (1924) - Contributo allo studio del terremoto romano del 1 novembre 1895. Boll. Soc. Sism. It., 24, 89-91, Roma.
AMANTI M., GISOTTI G. \& PECCI M. (1995) - I dissestia Roma. In Mem. Descr. Carta Geol. d'It., L, 215-248, Roma.

AMBROSETTI P., BONADONNA F.P.(1966) - Revisione dei dati sul Plio-Pleistocene di Roma. - Atti Accad. Gioenia di Sci. Nat., 18, 33-72.
AMBROSINI S., CASTENETTO S., CEVOLANI F., DI LORETO E., FUNICIELLO R., LIPERI R., MOLIN D. (1986) - Risposta sismica dell'area urbana di Roma in occasione del terremoto del Fucino del 13 gennaio 1915. Risultati preliminari. Mem. Soc. Geol. It., vol 35/1, Roma.
ARNOLDUS-HUIZENDVELD A., CORAZZA A., DE RITA D., ZARLENGA F. (1997) - II paesaggio geologico ed i geotopi della Campagna Romana. Quaderni dell'Ambiente, 5, Fratelli Palombi Ed., Roma.
BELLOTTI P., CHIOCCI F.L., MILLI S., TORTORA P., VALERI P. (1994) - Sequence stratigraphy and depositional setting of the Tiber delta: integration of high-resolution seismics, well logs and archeological data. Jour. Sed. Res., 64, 416-432.
BELLOTTI P., MILLI S., TORTORA P., VALERI P. (1995) - Physical stratigraphy and sedimentology of the Late Pleistocene-Holoce-
ne Tiber delta depositional sequence. Sedimentology, 42, 617-634.
BERNABINI M. (1965) - Un esempio di applicazione dei metodi sismici allo studio del comportamento statico dei pilastri in sotterraneo. Symp. Ass. Min. Sard., Cagliari, Iglesias.
BERNABINI M., ESU F., MARTINETTI S., RIBACCHI R. (1966) - On the stability of the pillars in a underground quarry worked through soft pyroclastic rocks, Proc. I Int. Congr. Rock Mech., pag. 285-291.
BONADONNA F.P. (1968) - Studi sul Pleistocene del Lazio V. La biostratigrafia di Monte Mario e la "fauna malacologica mariana" di Cerulli Irelli. Mem. Soc. Geol. It., 7, 261-321.
BOSCHI E., DI BONA M. FUNICIELLO R., MALAGNINI L., MARRA F., ROVELLI A., SALVI S. (1990) - La geologia del sottosuolo in relazione al comportamento sismico della città di Roma. Atti del VII Congresso Nazionale dell'Ordine dei Geologi, 1990, Roma.
BOZZANO F., FUNICIELLO R., MARRA F., ROVELLI A., VALENTINI G. (1995) - Il sottosuolo dell'area dell'Anfiteatro Flavio a Roma. Geologia Applicata e Idrogeologia, 30, 417-436.
BRANCALEONI R., CORAZZA A., GARBIN F., LEONE F., MORASCHINI C., SCARAPAZZI M. (2003) - Il Rilievo di Monte Mario a Roma: sviluppo urbanistico e dissesti. Un caso di Geologia Urbana. Geologia dell'Ambiente, Anno XI, 3, 2-14, SIGEA, Roma.
CAPELLI G. \& MAZZA R. (2005) - Water criticality in the Colli Albani (Rome, Italy). Giornale di Geologia Vol. 1, p. 263-273.
CAPELLI G. \& MAZZA R. (in stampa) - Caratteristiche idrogeologiche dell'area romana. Atti dei Convegni dei Lincei "Ecosistema Roma" (14-16 aprile 2004 - Roma). Accademia Nazionale dei Lincei, p. 301-310.
CAPELLI G., FUNICIELLO R., IORIO D. \& SALVATI R. (1999) - Loss of groundwater resources following major quarrying activity in urban areas: the Galeria Magliana quarry basin (Rome, Italy). Impacts of Urban Growth on Surface Water and Groundwater Quality (Proceedings of IUGG 99 Symposium HS5, Birmingham, July 1999). IAHS Pubbl. no. 259, pp. 169-175.
CAPELLI G., MAZZA R. \& GAZZETTI C. (a cura di) (2005) - Strumenti e strategie per la tu-
tela e l'uso compatibile della risorsa idrica nel Lazio. Gli acquiferi vulcanici. Quaderni di Tecniche di Protezione Ambientale n. 78. Pitagora Editrice Bologna, pp. 216, 4 tavv. f.t., 21 tavv. f.t. su CD ROM allegato.

CAPELLI G., MAZZA R., DE FILIPPIS L., SALVATI R. \& CECILI A. (2001) - Studi di geologia ambientale: caratterizzazione idrogeologica delle aree protette di "RomaNatura". Informatore Botanico Italiano - Boll. Soc. Bot. It. Vol 33, Suppl. 1, p. 29, 13 tavv. f.t. su CD-ROM allegato.
CAPELLI G., SALVATI R,, MAZZA R. \& ZALAFFI M. (2002) - Caratteristiche idrogeologiche del Delta del Fiume Tevere e monitoraggio della falda superficiale nell'area di Castel Fusano. In: Il recupero ambientale della pineta di Castel Fusano- studi e monitoraggi, a cura di Blasi C., Cignini B., Dellisanti R.M., Montagna P. Palombi Editori, p. 9-13.

CARBONI M.G., FUNICIELLO R., PAROTTO M., MARRA F., SALVI S., CORAZZA A., LOMBARDI L., FEROCI M. (1991) - Geologia e idrogeologia del centro storico di Roma. Progetto Strategico Roma Capitale, CNR.
CATENACCI V. (1992) - Il dissesto geologico e geoambientale in Italia dal dopoguerra al 1990. Mem. Descr. Carta Geol. d'It., XLVII.

CERLESI E. (1990) - La costruenda rete fognaria e la latomia di Centocelle Vecchia, Roma.
CIFELLI F., DONATI S., FUNICIELLO F. (1999a) - Distribution of Effects in the Urban Area of Rome, for the October 14, 1997 (central Italy) Event. Physics and Chemistry of the Earth, 24, 6, 483-488.
CIFELLI F., DONATI S., FUNICIELLO F., ROVELLI A_{1}, TERTULLIANI A_{1}, FUNICIELLO R. (1998) - Effetti macrosismici nell'area urbana di Roma in occasione di due terremoti della sequenza umbro-marchigiana a difersa profondità ipocentrale. Atti del Congresso Nazionale della Società Geologica Italiana, Palermo, Italy, 21-23 settembre 1998.

CIFELLI F., DONATI S., FUNICIELLO F., TERTULLIANI A. (1999b) - High-density macroseismic survey in urban areas. Part 1: proposal for a methodology and its application to the city of Rome. Annali di Geofisica, 42, 1, 99-114.
COLOZZA R., DOLCE M. (1995) - Vulnerabilità e
rischio di danneggiamento degli edifici. In "La Geologia di Roma. Il centro storico". Mem. Descr. Carta Geol. d'It., 50, 497-542. COMMISSIONE VALUTAZIONE RISCHI AMBIENTALI (1994) - L'ambiente nel centro storico e a Roma. Secondo Rapporto: il suo10/sottosuolo. Comune di Roma, Dipartimento delle Politiche Territoriali, Roma.
COMUNE DI ROMA (1997) - Relazione sullo stato dell'ambiente a Roma. Maggioli Ed., Roma.
CONATO V., ESU D., MALATESTA A., ZARLENGA F. (1980) - New data on the Pleistocene of Rome. Quaternaria, 22, 131-176.
CONTI M. (1999) - Interventi di risanamento e consolidamento di cavità sotterranee: il caso della scuola di S. Beatrice (Roma). Convegno "Le cavità sotterranee nell'area urbana di Roma e nella Provincia. Problemi di pericolosità e gestione" Provincia di Roma, Roma.
CORAZZA A. (2004 a) - Il rischio di fenomeni di sprofondamento in Italia: le attività del Dipartimento della Protezione Civile. Atti del Convegno "Stato dell'arte sullo studio dei fenomeni di sinkholes e ruolo delle amministrazioni statali e locali nel governo del territorio" Roma 20-21 maggio 2004, pp. 319-330.
CORAZZA A. (2004 b) - Censimento dei dissesti dovuti a cavità sotterranee in Italia. La scheda di rilevamento. Atti del Convegno "Stato dell'arte sullo studio dei fenomeni di sinkholes e ruolo delle amministrazioni statali e locali nel governo del territorio" Roma 20-21 maggio 2004, pp. 307-318.
CORAZZA A., GIULIANO G. (1994) - Idrogeologia e vulnerabilità delle risorse idriche della città di Roma. L'ambiente del centro storico e a Roma, Secondo Rapporto: il suolo/sottosuolo, Comune di Roma, Roma.
CORAZZA A., LANZINI M, ROSA C., SALUCCI R. (1999) - Caratteri stratigrafici, idrogeologici e geotecnici delle alluvioni tiberine nel settore del Centro Storico di Roma. Il Quaternario, 12(2), 215-235, Roma.
CORAZZA A., LEONE F., MAZZA R. (2002) - II quartiere di Monteverde a Roma: sviluppo urbanistico e dissesti in un'area urbana. Geologia dell'Ambiente, anno X, n. 1, 8-18, SIGEA, Roma.
CORAZZA A., LOMBARDI L. (1995) - Idrogeolo-
gia dell'area del centro storico di Roma. In Mem. Descr. Carta Geol. d'It., L, 173-211, Roma.
CORAZZA A., LOMBARDI L., LEONE F., BRANCALEONI R., LANZINI M. (2004). - Le acque sotterranee nei terreni di riporto della citta' di Roma. Atti Convegno "Ecosistema Roma", Accademia dei Lincei, Roma, 14 16 Aprile 2004.
CORAZZA A., MAZZA R. BERTUCCIOLI P., PUTRINO P. (2002) - Il Progetto "Cavità" analisi del rischio dovuto a cavità sotterranee. Atti dei Convegni Lincei, XIX Giornata dell'Ambiente "Il dissesto idrogeologico. Inventario e prospettive", Roma 5 giugno 2001, 355-363.
CRESCENZI R., PIRO M., VALLESI R. (1995) - Le Cavità sotterranee a Roma. In "La Geologia di Roma. Il centro storico". Mem. Descr. Carta Geol. d'It., 50, 497-542.
CRESCENZI R., PIRO M., VALLESI R. (1995) - Le cavità sotterranee a Roma. In Mem. Descr. Carta Geol. d'It., L, 249-278, Roma.
DATE C. J. (1995) - An introduction to database systems, 6th Ed. Wiley \& Sons, Readings, 840 pp .
DE ANGELIS D'OSSAT G. (1942) - Nuove sezioni geologiche dei Colli di Roma. Boll. Soc. Geol. It., 61, Roma.
DE PANSILIS M. (1959) - Attività sismica in Italia dal 1953 al 1957. Annali di Geofisica, 12, 7-9, Roma.
DI LORETO E., GISOTTI G. (1994) - Geologia e idrologia urbana. Verde Ambiente, n. 6 (Speciale Roma), Roma.
DONATI S., (2000) - Guida al sottosuolo e alla risposta sismica di Roma. DEI, Tipografia del Genio Civile, Roma.
DONATI S., FUNICIELLO R., ROVELLI A. (1999) - Seismic response in archaeological areas: the Case-Histories of Rome. Journal of Applied Geophysics, 41, 229-239.
ESU F. et Alii, (1965) - Insediamento edilizio in località Tre Fontane - Ricerche geotecniche. Edited by centro Coordinamento Progettazione Integrale, Edigraf, Roma, pag. 163175.

FACCENNA C., FUNICIELLO R. \& MARRA F. (1995) - Inquadramento geologico strutturale dell'area romana. In Mem. Descr. Carta Geol d'It., L, 31-118, Roma.
FEDERICO F., SCREPANTI S. (2002) - Analisi
della stabilità di cavità sotterranee in rocce piroclastiche del sottosuolo di Roma. Atti del XXI Convegno Nazionale di Geotecnica, AGI, L'Aquila, pag. 529-536
FEROCI M., FUNICIELLO R., MARRA F., SALVI S. (1990) - Evoluzione tettonica e paleogeografica plio-pleistocenica dell'area di Roma. Il Quaternario, 3 (2), 141-148, Roma.
FOCARACCI. A.(2005) - La gestione progetuale e costruttiva delle gallerie, Gallerie e Grandi Opere Sotterranee ($n^{\circ} 67$ agosto 2005)
FUNICIELLO R. \& GIORDANO G. (a cura di) (2005) - Carta Geologica del Comune di Roma. Volume 1. Scala 1:10.000. APAT - Dipartimento Difesa del Suolo, Comune di Roma - Ufficio Protezione Civile, Università degli Studi "Roma Tre" - Dipartimento di Scienze Geologiche, pubblicazione su CDRom.
FUNICIELLO R., a cura di (1995) - La Geologia di Roma. Il centro storico. Memorie descrittive della carta geologica d'Italia, 50, Roma.
FUNICIELLO R., GIORDANO G., DE RITA D., CARAPEZZA M.L., BARBERI F. (2002) - L'attività recente del cratere del Lago Albano di Castelgandolfo. Rend. Fis. Acc. Lincei s. 9, v. 13, 113-143, Roma.

FUNICIELLO R., MARRA F., PAROTTO M. (1993) - Attraverso la città di Roma. In Guide Geologiche Regionali, vol. 5, "Lazio", Società Geologica Italiana, 229-245, Roma.
FUNICIELLO R., THIERY A. (1998) - I/ balcone di Roma: da Montedoro a Monteverde. Fratelli Palombi Editori, Roma.
GEOPLANNING S.r.l. (1999) - Relazione geolo-gico-tecnica: indagini geognostiche e georadar nel giardino di Villa Mazzanti - Roma. Relazione inedita.
GIGLI E. (1971) - Cosa c'è sotto Roma? Monte Mario Vaticano Gianicolo un'origine comune. Capitolium, 46, (7/8), Roma.
GIORDANO G., MAZZA R., CAPELLI G., FUNICIELLO R. \& PAROTTO M. (in stampa) Geological surveying in a metropolitan area: The southern suburbs of the of Rome. In: Dal metodo alla rappresentazione: Atlante geologico d'Italia 2004, a cura di Pasquaré G. \& Venturini C., p.113-122.
GISOTTI G. (1994) - La stabilità delle gallerie adibite a coltivazione di funghi in via Appia Pignatelli (Roma). Rel. 20/09/1994, Servi-
zio Geologico Nazionale, Roma.
GISOTTI G. (1997) - La stabilità delle gallerie adibite a coltivazione di funghi in via delI'Almone, 6 (Roma). Rel. 14/11/1997, Servizio Geologico Nazionale, Roma.
GISOTTI G., ZARLENGA F. (1998) - La geologia della città di Roma tra urbanistica e archeologia. Geologia dell'Ambiente, 4, SIGEA, Roma.
GISOTTI G., ZARLENGA F. (1998) Geologia urbana: lo stato dell'arte in Italia. "Geologia dell'Ambiente", n. 4, SIGEA, Roma.
GISOTTI G., ZARLENGA F. (2004) Geologia Ambientale. Principi e metodi. Dario Flaccovio Editore, Palermo.
GRISOLIA M. (1999) - Problematiche fondazionali in presenza di cavità sotterranee. Convegno "Le cavità sotterranee nell'area urbana di Roma e nella Provincia. Problemi di pericolosità e gestione" Provincia di Roma, Roma.
INSOLERA I. (1962) - Roma moderna, un seco10 di storia urbanistica. Piccola Biblioteca Einaudi, Giulio Einaudi editore S.p.A., Torino.
LANZINI M. (1995) - Il problema delle cavità sotterranee a Roma (un rischio geologico). Geologia dell'Ambiente, III, n.3, SIGEA, Roma.
LEMBO FAZIO A., RIBACCHI R. (1990) - Problemi di stabilità di scarpate e cavità sotterranee in rocce piroclastiche. Politecnico di Torino, MIR, Vol. 11, pag. 1-13.
LEONE F. (2003) - Inondazioni e terremoti, i punti deboli del Lazio. - Corriere della Sera 11/11/2003, Roma.
LEONE F. (2003) - Quando, nel 1349, crollarono chiese e monumenti. - Corriere della Sera 21/07/2003, Roma.
LEONE F. (2003) - Terremoti: paure antiche e nuove regole per costruire. - Corriere della Sera 21/07/2003, Roma.
LEONE F. (2004) - Piogge e rischi, vent'anni di memorie dal sottosuolo. - Corriere della Sera 18/10/2004, Roma.
LEONE F. (2005) - Una carta geologica per l'area romana. Corriere della Sera 10/10/2005, Roma.
LEONE I. (1986) - Problemi connessi al consolidamento di una pendice del colle del Gianicolo in Roma interessata da moti franosi. A.G.I. - XVI Convegno Nazionale di Geotecnica, 14-16 Maggio, Bologna.

LUGLI G. (1951) - Come si è trasformato nei secoli il suolo di Roma. Rend. Sci. Mor., 6, Roma.
LUNARDI P. (1989) - L'empoi de microtunnels pour la realisation d'ouvrages souterrains de grande portée: l'arc cellulairei, Congresso " Tunnel and Water " - Madrid, Spagna, Luglio 1989.
LUNARDI P., FOCARACCI A., MERLO S., (1997) - Il pretaglio meccanico per la costruzione della volta di $21,5 \mathrm{~m}$ di luce della stazione "Baldo degli Ubaldi", Gallerie e Grandi Opere Sotterranee ($\mathrm{n}^{\circ} 7$ novembre 1997)
MANGIANTI F., LEONE F. (2003) - Analisi pluviometrica dei dati giornalieri e orari registrati presso l'Osservatorio meteorologico del Collegio Romano nel periodo 19412000. Accademia Nazionale dei Lincei, Convegno "La Siccità in Italia", Roma, 21 marzo 2003.
MANGIANTI F., LEONE F. (2004) - Analisi delle precipitazioni nel periodo 1941-2000 al Collegio Romano. Accademia Nazionale dei Lincei, Roma, Atti dei Convegni Lincei, 204, "La Siccità in Italia", pp.195-202.
MARRA F. ROSA C. (1995) - Stratigrafia e assetto geologico dell'area romana. In R. Funiciello (Ed.) 1995, "La geologia di Roma. Il centro storico di Roma". Memorie descrittive della Carta Geologica d'Italia, 50 , 49-118.
MARRA F. \& ROSA C. (1995) - Stratigrafia e assetto geologico dell'area romana. In Mem. Descr. Carta Geol. d'It., L, 49-112, Roma.
MARRA F. (1993) - Stratigrafia e assetto geolo-gico-strutturale dell'area romana tra il Tevere e il Rio Galeria. Geologica Romana, 29, 515-535, Roma.
MARRA F., CARBONI M.G., DI BELLA L., FACCENNA C., FUNICIELLO R., ROSA C. (1995 a) - Il substrato plio-pleistocenico nell'area romana. Boll. Soc. Geol. It., 114, 195-214, Roma.
MARRA F., ROSA C. (1995) - Stratigrafia e assetto geologico dell'area romana. In Mem. Descr. Carta Geol. d'It., L, 49-112, Roma.
MARTINELLI G. (1913) - Terremoto romano del 31 agosto 1909. Boll. Soc. Sism. It., 13, 311, Roma.
MARTINETTI S., RIBACCHI R. (1965) - Osservazioni sul comportamento statico dei pilastri in una cava in sotterraneo di materiali
piroclastici. Symposium Probl. Geomin. Sardi, sez. II, B5, Cagliari.
MAZZA R., PAGANELLI D., CAMPOLUNGHI M.P., CAPELLI G., LANZINI M., SERENI M., DE FILIPPIS L. (2001) - Rischio di crolli da cavità sotterranee nel settore orientale della città di Roma (comunicazione orale), III Forum Italiano di Scienze della Terra, Geoitalia (58 Settembre 2001, Chieti) (Abstract in Abstract Book del Congresso).
MAZZA R., ROSA C., CAPELLI G. \& SERENI M. (2004) - La geologia di Centocelle. In: Centocelle I. Roma S.D.O. Le indagine archeologiche, a cura di Gioia P. \& Volpe R. Rubettino editore, pp. 165-176.
MIKHAILOVA M.V., BELLOTTI P., VALERI P., TORTORA P. (1999) - Intrusion of sea water in to the river part of the Tiber mouth. Water Resources, 26 (6), pp. 679-686.
MILLI S. (1997) - Depositional settings and hi-gh-frequency sequence stratigraphy of the middle-upper pleistocene to Holocene deposits of the Roman basin. - Geologica Romana, 33, 99-136.
MORASCHINI C. (1998) - Proposta di recupero ambientale dell'area di Villa Mazzanti e di Villa Mellini. Bollettino della Biblioteca della Facoltà di Architettura dell'Università degli Studi "La Sapienza" di Roma, n. 58-59, Cangemi Editore.
MOSCATELLI M., MILLI S., PATERA A., STIGLIANO F., STORONI RIDOLFI S., BRANCALEONI R., GARBIN F. - Caratteristiche geologiche e geotecniche dei terreni della città di Roma. Atti del II Congresso GeoSed 2004 "La geologia del sedimentario nella ricerca di base e nelle sue applicazioni" CNR, Roma, 22-28 Settembre 2004.
PAZZAGLI G., MAURI M.P. (2002) - Urbanistica, piani regolatori e conoscenza del sottosuolo. In Geologia dell'Ambiente, n. 1, SIGEA, Roma
PELLEGRINO A. (2002) - Dissesti idrogeologici nel sottosuolo della città di Napoli - Analisi ed interventi. Atti XXI Convegno Nazionale di Geotecnica, L'Aquila 11-14 settembre 2002.

PIPERNO F. (1929) - Relazione sul disastro del 14 ott. 1928. Commissione cooperativa edilizia del Senato, Roma.
PONZI G. (1875) - Dei Monti Mario e Vaticano e del loro sollevamento. Atti R. Acc. Lincei, 2,

Roma.
PORTOGHESI P. (1981) - Roma un'altra città. Roma.
PROVINCIA DI ROMA, SIGEA (1999) Le cavità sotterranee nell'area urbana di Roma e nella Provincia. Problemi di pericolosità e gestione. Atti del Convegno, Roma.
SABETTA F., PACIELLO A. (1995) - Valutazione della pericolosità sismica. In "La Geologia di Roma. Il centro storico". Mem. Descr. Carta Geol. d'It., 50, 497-542.
SANTORO V. M., FEDERICI V. (1999) - Studi e indagini di un sistema di cavità sul Colle Aventino (Roma). Convegno "Le cavità sotterranee nell'area urbana di Roma e nella Provincia. Problemi di pericolosità e gestione" Provincia di Roma, Roma.
SANTORO V. M., FEDERICI V. (2002) - Studio del sistema di cavità nella zona di Via S. Giosafat, sul cole Aventino a Roma: valutazione del rischio potenziale scelta degli interventi di consolidamento per il ripristino della viabilità, Atti del XXI Convegno Nazionale di Geotecnica, AGI, L'Aquila, pag. 595602.

SCIOTTI M. (1982) - Engineering Geological Problems due to old Underground Quarries in the Urban Area of Rome. Proc. IV Congr. IAEG, I, 211-225.
SCIOTTI M. (1984) - Il problema del recupero delle zone interessate da vecchie cave in sotterraneo nell'area urbana di antichi centri abitati. Quarry and Construction.
SCIOTTI M. (1984) - Situazione di rischio, naturali ed indotte, in alcuni centri abitati dell'Italia Centrale. Criteri di intervento. II Congr. Naz. "La città difficile", Ferrara.

SCIOTTI M. (1999) - Il sottosuolo delle aree urbane: risorsa o minaccia?. Convegno "Le cavità sotterranee nell'area urbana di Roma e nella Provincia. Problemi di pericolosità e gestione" Provincia di Roma, Roma.
SCIOTTI M. (2001) - Rischio Cavità Sotterranee nell'area del Comune di Roma. Amm. Comunale di Roma.
SERVIZIO GEOLOGICO NAZIONALE (1995) - La Geologia di Roma. Il Centro Storico. Mem. Descr. Carta Geol. d'It., L, Roma.
TERTULLIANI A., RIGUZZI F. (1995) - Earthquakes in Rome during the past one hundred years. Annali di Geofisica, 38, 5-6, 581-590.
THOMAS R.G. (1989) - Geology of Rome, Italy. Bulletin of the Association of Engineering Geologists, 36, 4, 415-476.
TORO B., DI FILIPPO M. (1999) - Individuazione di cavità nel sottosuolo con metodi gravimetrici. Il caso di via buie d'Istria. Convegno "Le cavità sotterranee nell'area urbana di Roma e nella Provincia. Problemi di pericolosità e gestione" Provincia di Roma, Roma.
VALLARIO A. (2001) - Il dissesto idrogeologico in Campania. CUEN ed., Napoli.
VENTRIGLIA U. (1971) - La Geologia della Città di Roma. Carta Idrogeologica. Amministrazione Provinciale di Roma. Roma.
VENTRIGLIA U. (1990) - Idrogeologia della Provincia di Roma. Provincia di Roma, Ass. LL. PP. Viab. e Trasp., Roma.
VENTRIGLIA U. (2002) - Geologia del territorio del Comune di Roma. Amm. Prov. di Roma, Servizio Geologico Difesa del Suolo, Roma.

SIGEA Società Italiana di geologia Ambientale
Casella Postale 15244 (00143) ROMA
Tel. $06.5943344-338$ 8319443; fax 06.8845960
E-mail: info@sigeaweb.it
http://www.sigeaweb.it
La SIGEA è un'associazione culturale, senza fini di lucro, per la promozione del ruolo delle Scienze della Terra nella protezione della salute e nella sicurezza dell'uomo, nella salvaguardia della qualità dell'ambiente naturale ed antropizzato e nell'utilizzazione più responsabile del territorio e delle sue risorse.
La SIGEA è un'associazione aperta non solo ai geologi, bensì a tutte le persone che hanno interesse alla tutela dell'ambiente.
L'associazione ha lo scopo di favorire il progresso, la valorizzazione e la diffusione della Geologia Ambientale e di stimolare il coordinamento e la collaborazione interdisciplinare nelle attività conoscitive ed applicative rivolte alla tutela ambientale.
Pertanto essa opera nei settori dell'educazione e divulgazione, della formazione professionale, della ricerca applicata e in altri settori correlati con le suddette finalità, organizzando corsi, convegni, escursioni di studio, interventi sui mezzi di comunicazione di massa.

Geoplanning srl

Via Giano della Bella 43/45
00162 Roma - Tel. 064469550 , fax 064469549
http://www.geoplanning.it

Soles Spa

Pali di fondazione Soles-brevettati ad infissione statica ad alta capacità portante.
Consolidamento e sollevamento fabbricati
Sedi: Forli - Roma - Padova - Napoli
tel. 0543781120
http://www.soles.net - mail@soles.net

Cipa Spa

Via Modesto Panetti, 95-00138 Roma
tel. 0688588144
http://www.cipasorrento.com
Maire engineering Spa
Via di Vannina, 88-00156 Roma
tel. 064122351 -
http://www.maireengineering.com

Strago Srl

Via Campana, 233-80078 Pozzuoli (NA)
tel. 0815240611
http://www.strago.it

Cmg testing Srl

Via Tito Livio, 165-00136 Roma
tel. 0635498555
http://www.cmgtesting.it
Varisco Wellpoint Srl
Zona Industriale Nord Terza Strada, 9
35129 PADOVA
tel 0498294111 -
http://www.variscowellpoint.it

La Sintesi srl

Piazzale Roberto Ardigò, 31
00142 Roma
tel. 065406964 / 065403725
http://www.la-sintesi.it

Gli autori: Francesco Alberti, Roberto Brancaleoni, Giuseppe Capelli, Giuseppe Cavarretta, Gian Paolo Cavinato, Andrea Cinuzzi, Angelo Corazza, Alessandro Focaracci, Daiane Folle, Fabio Garbin, Calvino Gasparini, Giuseppe Gisotti, Maurizio Lanzini, Francesco Leone, Italo Insolera, Marco Mancini, Daniela Marzano, Roberto Mazza, Antonio Maria Michetti, Salvatore Milli, Massimiliano Moscatelli, Antonio Patera, Giulio Pazzagli, Giuseppe Raspa, Sergio Storoni Ridolfi, Andrea Sciotti, Francesco Pio Stigliano, Roberto Vallone

[^0]: Giuseppe Gisotti, Geologo e Forestale; Presidente SIGEA, Società Italiana di Geologia Ambientale

[^1]: Fabio Garbin, Geologo, Preside della Facoltà di Scienze della Terra della Libera Universitas LUMUCI in Orvieto; direttore di un Laboratorio di Ricerca Altamente Qualificato del MIUR - Ministero dell'Istruzione dell'Università e della Ricerca; membro del Consiglio Direttivo dell'ALGI, Associazione Laboratori Geotecnici Italiani.
 Giulio Pazzagli, Geologo, Presidente società IGA (Ingegneria, Geologia, Ambiente) Consulting; membro del Consiglio Direttivo della SIGEA, Società Italiana Geologia Ambientale.

[^2]: Francesco Alberti, Geologo è membro del Consiglio di Presidenza A.G.I., Associazione Geotecnica Italiana

[^3]: Alessandro Focaracci è Consigliere Tecnico del Ministro delle Infrastrutture e dei Trasporti; Docente di "Sicurezza delle Infrastrutture" alla Facoltà di Ingegneria de "La Sapienza" di Roma; Presidente del comitato italiano "Tunnel" del PIARC- Associazione Mondiale Della Strada; Vicepresidente del Consorzio FASTIGI - Formazione Addestramento Scienze e Tecnologie in Gallerie (per la sicurezza delle infrastrutture) e Vicepresidente della S.I.G. Società Italiana Gallerie.

[^4]: Andrea Sciotti, laureato in Ingegneria Mineraria (indirizzo geomeccanico) presso l'Università degli studi di Roma "La Sapienza". Dopo cinque anni di esperienza lavorativa (cantiere e progettazione) presso primarie imprese di fondazioni ed opere speciali, fa ingresso nella società di ingegneria Rocksoil Spa di Milano, specializzata nella progettazione e nell'assistenza tecnica per i lavori in sotterraneo. In tale ambito, dapprima Responsabile del tratto toscano dell'AV Bologna-Firenze, sotto il coordinamento diretto del responsabile della Progettazione dell'intera tratta; successivamente Responsabile dell'ufficio di Roma, sui lavori di Roma (Quattro Venti, Passante a Nord-Ovest,....) e Napoli (Linea 1, Linea 6,....). Dal dicembre 2004, Direttore dei Lavori per l'appalto integrato relativo alla progettazione e costruzione della Diramazione Piazza Bologna Piazza Conca d'Oro (Linea B1) dell'esistente Linea B della metropolitana di Roma, presso la società Roma Metropolitane S.r.I.

[^5]: Antonio Maria Michetti, già Docente di Tecnica delle Costruzioni presso la Facoltà di Architettura dell'Università "La Sapienza" di Roma.
 Andrea Cinuzzi, Ingegnere civile e strutturale, Libero professionista

[^6]: Daniela Marzano laureata in architettura nel 1991 presso I'Università degli Studi di Roma "La Sapienza", è attualmente libero professionista, C.T.U.; Docente in corsi sulla sicurezza; Consulente dell'Ordine degli Architetti PPC di Roma e Provincia per il Fascicolo del Fabbricato e Delegato all'Osservatorio Permanente del Comune di Roma Al F.F. dal 2002.

[^7]: e de l'Italie - Manuel du Voyageur par Karl Baedeker, Leipzig éditeur).

